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CCT joined the fold in Nov. 2016
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Common coilsCos-theta 

Block coil Canted Cosine Theta



CCT Design for FCC

• Keys to an efficient CCT design:
1. Thin spars

2. Wide cable, large strands

3. Thin ribs.
Increase Je.

Spar

Ribs



PSI’s CCT Design for FCC
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• Current: 18055 A

• FCC-wide conductor use:
• Total: 9.77 kt (+30% wrt. cosine theta/block)

• NonCu: 3.75 kt

• Cu: 6.02 kt

• Total inductance: 19.2 mH/m

• Total energy: 3.2 MJ/m

Layer # nS cuNc loadline
marg. [%]

current 
marg. [%]

Tpeak

[K]
Vgrnd

[V]
Jcu

[A/mm2]

1 29 0.8 14.2 111 292 1133 1237

2 25 1.1 14.4 95 342 1264 1217

3 22 1.95 14.4 74 310 1156 1096

4 20 2.6 15.7 70 338 1144 1103

Homogeneous coil 

temperature after quench.

Geometric/nl. iron

harmonics:

b2 <= 6 units

b3,4,5, .. <= 1 unit



3-D modeling results:
• Yoke cut-back not needed (20 mT peak-field enhancement in ends).

• Magnetic length with yoke equal to that of bare coil.

• Physical length minus magn. length = 53 cm; equal to 11 T magnet. 

• Peak field minus main field at 16-T bore field: 0.14 T excluding self field.
 comparable or lower than cos-theta due to continuous current distribution.
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Courtesy M. Negrazus

3-D Magnetic Design



Mechanical Structure

• CCT does not require azimuthal prestress.

• Radial prestress on the midplane provided by “scissor” laminations
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2D Mechanical Design
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135 MPa on conductor



3-D Periodic Simulation
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• Generalized plane stress condition applied (following D. Arbelaez, L. Brouwer, LBNL)

• Initial 3-D results confirm 2D, but show distinct imprint of scissors lams 

 increase protective shell thickness, change its material to iron 

 decrease lamination thickness.

135 MPa on conductor

Courtesy G. Rolando



Windability

• Improve windability through inclined channels.

• Winding tests at LBNL and PSI.

• Successful tests with LD1 cable (@LBNL), 

LBNL CCT cable, and 11-T cable (@PSI).
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inclined channel: successful

radial channel: de-cabeling



Machinability

• Successful test machining of 16-mm-deep 2-mm-wide 15-degree-inclined 

channels.

• FNAL gives some meters of cable for winding test.
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Courtesy Heinz Baumgartner AG



Double-Helix CCT for FCC
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Winding two Rutherford-cables into one groove, connected in series:

• Conductor weight from 9.77 kt to 9.22 kt (fewer ribs).

• Operating current from 18 kA to 16 kA.

• Inductance from 19 mH to 24 mH.

• ½ Cable unit length.

• ½ Machining path with increased speed.
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PSI Goals towards FCC Requirements

• Thin spars

• Exterior Bladder and Key structure

• Impregnation system (NHMFL resin, etc.).

• Fast quench detection and CLIQ protection.

• Wide Rutherford cable.

• Inclined channels manufacturing.
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CD1

CD2



Mechanical Structure
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Al shell 25 mm 

Vertically split yoke, OR 250 mmVertically split steel pad

Protective Al shell 5 mm

Vertical and horizontal keys

Bladder locations
Closed pad gap

Open yoke gapAl-bronze former

Bladder and Key technology chosen for tuneability and relative simplicity.

 Closed and pre-loaded pad gap for maximum-rigidity cage around coils.

 Steel pads to better match coil differential contraction.

 Designed with S. Caspi, LBNL.

International conceptual design review of CD1 on June 26 at CERN 

(http://indico.cern.ch/e/cd1cdr).

http://indico.cern.ch/e/cd1cdr)


Machining and Reaction Tests.

• First machining-, and winding-tests.

• Reaction-trial at CERN successful, channel-geometry validated. 
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Test formers delivered. Test winding completed. Preparation for heat treatment.

Before heat treatment After heat treatment



High-Voltage and Impregnation Tests

• Mica-reinforced glass-sleeve insulation, impregnated with CTD 101-K at CERN.

• Tested so far up to 5 kV without breakdown.

• Next steps: test up to 10 kV.

• Cut the sample for microscopic control of impregnation.
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Technical Coil Design

• With essential LBNL input from drawings and discussions, we are launching 

procurement of CD1 winding former and splice box.
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Courtesy S. Sidorov



Procurement of Reaction Furnace

• Order placed, expected commissioning: April 2018.
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Impregnation Trials

• Vacuum-bag impregnation training @CERN.

• First vacuum-bag impregnation at PSI in refurbished curing oven.

• Vacuum-vessel and heating-system procurement started.
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Courtesy G. Montenero



Mechanical-Model Preparation
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• Shell- and pads shipped.

• All other components delivered.



Strain-Gauge Measurement Setup
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• Strain-gauges mounted, tested, and validated at PSI.

• Dedicated training @CERN in the near future?

Courtesy G. Montenero



Summary

• The CCT option was established as a valid contender in the FCC design study.

• The PSI program has been designed to be complementary to and closely 

coordinated with the LBNL program, pushing towards specific features needed in 

an FCC magnet.

• PSI benefits from generous support by LBNL, integrating deeply with their 

program, as well as from regular exchanges and training with CERN staff who 

share freely and are most helpful – THANK YOU!
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Lessons from CCT4 Test:

1. the magnet was not performance limited - it only had subpar training.

2. three issues must be addressed to improve (and eventually eliminate) 

the training: 

a) epoxy cracking (strong evidence in acoustic data), 

 alternatives to CTD-101-K will be tested. 

 alternative filling-schemes will be tested.

b) epoxy de-lamination from the metal former, 

 chemical etching to increase surface roughness will be tested.

c) friction due to intra-layer movement (strong evidence in acoustic data),

 a slip-plane will be introduced.
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M. Marchevsky, 25th International Conference on Magnet Technology,  Amsterdam, Mo-Mor-Or3  

Mechanical relaxation after the quench

9677 A

10197 A

16266 A

~ 2.5 s

current

current

current

acoustic

acoustic

acoustic

Post-quench slip-stick relaxation

Cracking regime

Slip-stick regime
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Protection Studies

• Co-wound copper secondary windings significantly accelerate the current decay.

• Relevant only if detection and active-protection can be made more efficient.

• Cowound wire and/or interrogated optical fibers have potential to bring 

detection time to the order several milliseconds.

• CLIQ on CCTs promises to be effective.

• Numerical studies under way.

• About to join LBNL (L. Brouwer) effort to create user-defined ANSYS “quench 

elements” for consistent and efficient CLIQ modeling in ANSYS.
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courtesy: L. Brouwer



Manufacturability and Cost

• Deep channels, aspect-ratio ~10.

• Inclined channels  5-axis machining on long rotating cyl., machining tests under way.

• Selective Laser Melting (3-D printing) not successful.

• Collaboration with IWS Fraunhofer on 

fabrication of thin-lamination formers.

 Laser cutting, spot welding + diffusion welding.

 Goal: improve scalability and cost.
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