

Cosine-theta: electromagnetic design

Vittorio Marinozzi,

Giovanni Bellomo, Barbara Caiffi, Pasquale Fabbricatore, Stefania Farinon, Alessandro Maria Ricci, Massimo Sorbi

Outline:

1. Design parameters

- 2. Baseline layout
- 3. Alternative layouts and ideas
- 4. Conclusions and perspectives

1.1 Main design parameters

Constraints for the magnet desig	n
Bore inner diameter	50 mm
Beam distance	204 mm
Material	Nb ₃ Sn
Bore nominal field	16 T
Operating temperature	1.9 K
Operation on the load line	86 %
Maximum strand number per cable	40
Cable insulation thickness	0.15 mm
Cu/NCu	≥ 0.85
Field harmonics (geometric/saturation)	$\leq 3/10$ units
Yoke outer radius	300 mm

> Magnetic design for a **double aperture** magnet (LHC-style)

Vittorio Marinozzi

1.2 Critical current

Vittorio Marinozzi

5

Outline:

1. Design parameters

2. Baseline layout

- 3. Alternative layouts and ideas
- 4. Conclusions and perspectives

2.1 Cross section layout

2.3 Inductance and Stored energy

@ I_{op} : L=39.6 mH/m, U=2.6 MJ/m

Vittorio Marinozzi

2.4 Field quality

High-order harmonics at 16 T						
b2	b3	b5	b7	b9	b11	b13
-52.3	1.8	-1.15	1.7	1.4	1.0	-0.2

- ≻ All harmonics are within constraints
- > b2 optimization not yet performed
- > Persistent currents not considered

2.5 3D coil ends design

Integrated harmonics at 16 T				
b2	b3	b7	b9	al
-57.9	3.4	2.0	1.4	-4.8

Coil ends main parameters:

- Magnetic length = 2084 mm
- Iron length = 1780 mm
- Physical length = 2230 mm

2.6 Coil end cross section

11

2.7 Amount of conductor

HF Conductor

- 22 strands
- $\varnothing = 1.1 \text{ mm}$
- Cu/NCu = 0.85
- $J_{cu} = 1170 \text{ A/mm}^2$
- Strand Area = $26.8 \text{ cm}^2/\text{apert.}$
- Weight (FCC) = 3.05 ktons

COND. AREA (double ap.): = 131 cm²

FCC dipoles extrapolation:

COND. MASS: = 7.46 ktons

LF Conductor

- 37 strands
- $\varnothing = 0.7 \text{ mm}$
- Cu/NCu = 2.2
- $J_{cu} = 1140 \text{ A/mm}^2$
- Strand Area= 38.7 cm²/apert.
- Weight (FCC) = 4.41 ktons

Data for FCC extrapolation		
Number of dipole units	4578	
Dipole lenght	14.3 m	
Conductor density	8.7 kg/dm ³	

Vittorio Marinozzi

Outline:

- 1. Design parameters
- 2. Baseline layout
- 3. Alternative layouts and ideas
- 4. Conclusions and perspectives

3.1 Large b2 at nominal current

Vittorio Marinozzi

EuroCirCol Review, 09/10/2017, CERN

14

Warning: design with no accelerator field quality!

3.3 Persistent currents effect

- > 50 µm filament diameter
- \succ -50 units on b3 at injection
- > +8 units on b5 at injection
- No effect on b2
- Negligible effect at operation current

Vittorio Marinozzi

Possible solution: iron on the beam pipe? 50 |Btot| (T) 40

3.4 Persistent currents optimization

(Eur CirCol

17

Outline:

- 1. Design parameters
- 2. Baseline layout
- 3. Alternative layouts and ideas

4. Conclusions and perspectives

4.1 Conclusions and perspectives

- Baseline cosine-theta solution: a 4 layer dipole (two double pan-cakes) which accomplishes the EuroCirCol constraints:
 - Able to produce 16 T bore field
 - Margin on the load-line is 86% at 1.9 K
 - Good field quality (2D and 3D)
 - Competitive amount of conductor (7.46 ktons)
- > We are working and developing new ideas to optimize furthermore the magnet:
 - ▶ b2 optimization
 - Persistent currents
 - > 3D peak field

Thank you!