

2nd EuroCirCol WP5 Review Monday 9 -Tuesday 10 October 2017

B. CAIFFI

G. BELLOMO, P. FABBRICATORE, S. FARINON, V.MARINOZZI, A.M. RICCI, M. SORBI

Outlook

- Latest design double aperture
- Conductor:
- VM stress
- Contact pressure to the pole
- Displacements
- Mechanical structures:
- VM Stress
- Displacements
- Conclusions

Cos_θ layout

10/9/2017

Mechanical Constraints

• Stress in the conductor < 150 MPa @ RT

•

- < 200 MPa @ 1.9 K
- Stress on mechanical structure < yield strength
- No detachment between coil and pole

MATERIAL	Stress limit [MPa]		E [GPa]		ν	α
	RT	1.9 K	RT	1.9 K		RT→1.9K
Coil	150	200			0.3	
Radial dir			30	33		3.1 10 ⁻³
Azimuthal dir			25	27.5		3.4 10 ⁻³
Austenitic steel	350	1050	193	210	0.28	2.8 10 ⁻³
(316LN)						
AI7075	480	690	70	79	0.3	4.2 10 ⁻³
Ferromagnetic iron	230	720*	213	224	0.28	2.0 10 ⁻³
Ti6Al4V	800	1650	115	126	0.3	1.7 10 ⁻³

Critical Current Measurements of High-*J*_c Nb₃Sn Rutherford Cables under Transverse Compression

B. Bordini, P. Alknes, A. Ballarino, L. Bottura, L. Oberli

Fig. 6. Upper critical field at 4.2 K estimated from the critical current measurements under transversal pressure.

ANSYS models

ANSYS magnetic model

ANSYS mechanical model

Magnetic analysis

Lorentz Forces

	DX	FX sum (MN)	Fy sum (MN)	FƏ sum (MN)	σθ (MPa)
	1	2.1	-0.2	-2.1	-153
	2	2.3	-0.5	-2.3	-173
	3	2.0	-1.0	-2.0	-143
	4	0.4	-2.0	-0.4	-28
n rods	total dx	6.8	-3.7	-6.8	-120
	SX	FX sum (MN)	Fy sum (MN)	F0 sum (MN)	σ θ (MPa)
	1	-2.1	-0.2	2.1	156
	2	-2.4	-0.6	2.4	178
Conductor	3	-2.2	-1.1	2.2	157
	4	-0.7	-2.2	0.7	50
	total	-7.4	-4.1	7.4	131
	Total winding	-0.6	-7.8	0.6	

ANSYS model

- Glued contact elements

2nd WP5 Review Mechanics of Costheta 16T dipole

ANSYS model

Sliding permitted contact elements

ANSYS model

Sliding and detachment permitted contact elements

ANSYS model

• Step 1: insertion of key 1

Step 4: cooling down

conductor elements)

Step 5: energization to 16 T

- Step 2: insertion of key 2 (60 Mpa applied)
- Step 3 insertion of keys 3 and 4 (30 Mpa applied)

(application of Lorentz forces to the

assembly

] 1

2nd WP5 Review Mechanics of Costheta 16T dipole

Contact Pressure

VM stress on conductors

COOL DOWN ASSEMBLY 16T VM stress[Pa] () .222E+08 .444E+08 .667E+08 .889E+08 σ_{VM}^{MAX}=211 MPa 111E+09σ_{VM}^{MAX}=154 MPa $\sigma_{VM}^{MAX} = 180 \text{ MPa}$ 133E+09 .156E+09 140 .178E+09 Average Von Mises Stress [MPa] .200E+09 120 100 80 ---layer1 VM stress far below current degradation • ---layer 2 60 limit (150 MPa @ RT -200 MPa @ 1.9K) ——layer 3 40 layer 4 Localized hot spot after cooling down ٠ 20 (edge effect, negligible) 0 0 16T 1 ASSEMBLY COOLING Calculation Step

Deformation x 20

ASSEMBLY

MATERIAL	Stress limit [MPa]					
	RT	1.9 K				
Austenitic steel	350	1050				
(316LN)						
AI7075	480	690				
Ferromagnetic iron	230	720				
Ti6Al4V	800	1650				

COOL DOWN

MATERIAL	Stress limit [MPa]					
	RT	1.9 K				
Austenitic steel	350	1050				
(316LN)						
AI7075	480	690				
Ferromagnetic iron	230	720				
Ti6Al4V	800	1650				

16

Mechanics of Costheta 16T dipole

ENERGIZATION

MATERIAL	Stress limit [MPa]				
	RT	1.9 K			
Austenitic steel	350	1050			
(316LN)					
AI7075	480	690			
Ferromagnetic iron	230	720			
Ti6Al4V	800	1650			

Displacements Assembly - Undeformed

18

5

Displacements Cool Down- Assembly

ANSYS Release 17.2 Build 17.2 Buila PLOT NO. 1 -.001248 ANSYS Release 17.2 Build 17.2 PLOT NO. 1 -.607E-03 -.548E-03 400E 02 001109 -.488E-03 -.428E-03 -.369E-03 -.278E--.250E-03 139E-03 403E-06 -.190E-03 -.131E-03 -.711E-04 2 3 4 5 6 7

point	Disp _x [µm] CD -ASS	Disp _x [µm] CD - 0
1	-71	315
2	-250	120
3	-430	-470
4	-607	-670
5	-700	27
6	-900	-175
7	-1250	-560

19

10/9/2017

Displacements Energization 16T – Cool Down

point	Disp _x [µm] 16T -CD	Disp _x [µm] 16T - 0
1	-40	280
2	-143	-20
3	314	-160
4	220	-450
5	200	225
6	195	18
7	190	-370

21

Effect of displacement on field quality

- Field harmonics calculation was iterated at increasing currents values, taking into account the mechanical deformation induced by assembly, cool down and energization.
- b3 is worsen by up to 10 units
- very preliminary results, further analysis are required

	B[T]	b2	b3	b4	b5	b6	b7	b8	b9	b10
Undeformed geometry	16	-52,7	-3,21	-1,220	-1,830	-0,009	1,97	0,0	1,35	0,0
Assembly	-	-3,96	-17,3	-0,002	0,185	-0,078	1,59	-0,111	1,43	-0,076
Cool down	-	-4,96	-17,3	0,083	0,237	0,114	1,62	0,127	1,47	0,085
Energization	16,444	-43,7	-13,6	-0,883	-0,247	0,062	1,71	0,062	1,33	0,057

Conclusions

- The 16 T $\cos\theta$ mechanical model was updated in order to account for:
 - cooling channels
 - iron rods for b3 correction
- Mechanical analysis on the new optimized model shown that:
 - requirements on VM stress on conductors are almost fulfilled (localized edge effect due to wedges after cool down);
 - requirements on VM stress on contact pressure are almost fulfilled ($P_{cont} \rightarrow 0$ for 1° layer after energization at 16T, but still not negative)
 - requirements on VM stress on mechanical structures are almost fulfilled (localized hot spot under keys and in the notch in the Ti pole);
- Mechanical deformation and displacements due to mechanical stress and Lorentz forces do affect field quality and must be investigated further.

Thank you

Back-up slides

26

Contact Pressure – Glued contact

Average contact pressure per layer

2nd WP5 Review Mechanics of Costheta 16T dipole

27

Contact Pressure – Single aperture

Displacements – glued contact Energization 16T – Cool Down

point	Disp _x [µm]
1	-50
2	-141
3	288
4	206
5	203
6	165
7	160

Displacements – single apertures Energization 16T – Cool Down

pointDisp_x [μm]12402150312041155117

Effect of displacement on field quality

	B[T]	b2	b3	b4	b5	b6	b7	b8	b9	b10
Undeformed geometry	16	-52,7	-3,21	-1,220	-1,830	-0,009	1,97	0,0	1,35	0,0
Assembly		-3,96	-17,3	-0,002	0,185	-0,078	1,59	-0,111	1,43	-0,076
Cool down		-4,96	-17,3	0,083	0,237	0,114	1,62	0,127	1,47	0,085
	1,77	-4,98	-17,3	0,081	0,234	0,112	1,62	0,126	1,46	0,084
	5,254	-5,8	-18,5	-0,029	0,255	0,109	1,63	0,124	1,45	0,085
	6,875	-11,7	-17,4	-0,302	0,190	0,104	1,67	0,111	1,46	0,082
Enoraization	8,480	-18,6	-16,3	-0,489	0,126	0,101	1,69	0,112	1,46	0,082
Energization	11,688	-30,2	-14,8	-0,700	-0,003	0,090	1,70	0,095	1,43	0,076
	13,293	-35,2	-14,3	-0,772	-0,076	0,083	1,71	0,085	1,41	0,071
	14,84	-39,7	-13,9	-0,833	-0,156	0,073	1,72	0,074	1,38	0,062
	16,444	-43,7	-13,6	-0,883	-0,247	0,062	1,71	0,062	1,33	0,057