

Interpixel Capacitance Measurements

J.Sibille, V.Radicci, T.Rohe Summer 2009

II Annual PIRE Workshop, University of Nebraska 17-18 September 2009

Present barrel sensor characteristics:

Implants	n+/n
pixel implants	150x100µm pixel
interpix isolation	p-spray (uniform medium dose of p impurities covers the whole structure)
Gap	20 µm (distance between pixel implants)
Si crystal	<111>
Si substrate	DOFZ (standard FZ material enriched with oxygen on wafer)
bulk resistivity	3.7 KΩcm
thickness	285 μm
back side	p+ layer and guard rings

Motivation:

The sensor pitch (is fixed) The implant width

--> spatial resolution

--> capacitance between neighboring pixels

- contributes to the noise in the pixel preamplifier lower cap. --> lower noise
- contributes to the analogue current I ana

for a given peaking time lower cap. --> lower I ana

Early Studies at PSI on R&D structures --> an increase of Gap from 20 to 30 μ m leads to a capacitance decrease of ~20%

Barrel sensor group strategy for the Phase I Upgrade is to stay with the present sensor geometry, characteristics and vendor <u>eventually</u> change the gap size from 20->30 µm

Plan of the current study:

- 1) The sample: single barrel chips with different Gap design (from test structures on the same wafer of barrel sensor production)
- 2) Fan out mask for interpixel capacitance measurements: designed by Jennifer in April 09 produced end May 09
- 3) First measurements on a small sample (20chips) of capacitance, conductance, leakage current before and after irradiation with a Co60 at 17KGy (Asma July 09, Tilman in August 09)
- 4) Scurve-Noise and Pulse Shape rising time measurements on single chip +ROC (myself and Jennifer Sept. 09)
- 5) Simulation with the Synopsis-TCAD package (Jennifer and maybe 1 PIRE stud. help her during Summer)
- 6) Plan to have some Fpix chips (p-stop technique: high dose p+ implant ring around each pixel) and 3D sensor.

The sample:

Gap 20 or Dot 1

II PIRE Workshop, University of Nebraska 17-18 September 2009 V.Radicci

The sample:

Gap 30 - 2

Gap 30 - 3

II PIRE Workshop, University of Nebraska 17-18 September 2009 V.Radicci

Fan out mask:

Interpixel Capacitance measurements: fan out mask simple technology 3 layers: (metal, passivation, bumps)

1 pixel (blue) surrounded by 8 neighbors (red)

- $Cmeasured = \Sigma Cinter-pixel + Cstray$
 - = (# blue pixels) * Cinter-pixel + Cstray

Cstray is the cap of the readout structure, bond wires...

4 pixels connected, parallel

Macropixel structures: for Phase II

4 or 8 pixels connected together and routed to a wire bond pad

Bond pattern fits to strip APV hybrids pitch (by Alan Honma)

Also "bricked" pattern, macropixel lenghts proposed for the Strawman A for **Phase II**

Measurement setup and procedure:

Capacitance measurements set up (F. Bechtel and T. Rohe)

- Single chip sensors are bumpbonded to a "fan-out" chip
 The chip is glued on a vetronite support and wire bonded
 A small box, containing the chip, is connected to the LCR meter
- Signal level 100 mV
- Measurement frequencies 1 kHz, 10 kHz, 100 kHz
- Bias voltage 0 V 500 V

- 1. Capacitance, conductance and leakage current on samples
- 2. Remeasured after Co60 irradiation @ 17KGray --> saturation of fixed surface oxide charge
- 3.The sensor is removed and stray capacitance measured

10-0

Full Depletion

Voltage [V]

Break Down

Results - Leakage Current:

Voltage [V]

Results - Conductance:

 The pixel isolation when full depletion is reached can be seen nicely

No change with irradiation

Results - Interpix Capacitance:

★ n+ pixels are isolated only @ V_{bias} > V_{dep} (not type inv.)
★ After V_{dep}, C_{int} decreases with bias voltage due to the steady depletion of the interpixel p-spray layer.
★ Gap 30 show a lower value even if large spread!!!
★ Irradiation makes C_{int} less voltage dependent (fixed interface charges deplete the p-spray layer already at low V_{bias})

Results - Pulse Shape (unirr.)

V_{ana} optimized by Pretest --> Analogue current to be 24mA
 No difference in the rising time between Gap30 and Gap20

II PIRE Workshop, University of Nebraska 17-18 September 2009 Thanks to Samvel and Eric for providing the instructions and code to obtain the Pulse Shape.

Future plan

- make more samples

- measure the Noise (with the Scurve method) on chips with different design. Can we see any difference considering the accuracy of this measurements?

- measure the pulse shape (Samvel and Eric's procedure). Earlier simulations have shown a faster rising time of the signal in Gap 30s. Can we see this effect?

- simulate with the Synopsis-TCAD package the different designs evaluating the electric field, coupling/pixel capacitances...

- compare those results (measurements and simulations) with the one measured on the Fpix (pstop)

- we also asked for some 3D chips!