Exploring the String Axi- \& Photi-verses with Cosmo/Astrophysics and the LHC

John March-Russell
University of Oxford

with Mina Arvanitaki, Nathaniel Craig,
Savas Dimopoulos, Sergei Dubovsky, and
Nemanja Kaloper
arXiv:0905.4720 and more to come...

The Axiverse

Taking strong CP and properties of axions in string theory seriously, there exists a plenitude of axions with log-flat distribution of masses

Will show cosmo and astro observations will be exploring 23 orders of magnitude in energy in the next decade

$$
S_{\theta}=\frac{\theta}{32 \pi^{2}} \int d^{4} x \epsilon^{\mu \nu \lambda \rho} \operatorname{Tr} G_{\mu \nu} G_{\lambda \rho}
$$

Neutron e.d.m.

$$
\bar{\theta}=\theta+\arg \operatorname{det} m_{q} \lesssim 10^{-10}
$$

- Like CC and EW hierarchy problems a precise cancelation of apparently unrelated quantities is required
- NO anthropic reason

A clear call for new dynamics

The QCD axion

$$
S_{a}=\int d^{4} x\left(\frac{1}{2}\left(\partial_{\mu} a\right)^{2}+\frac{a}{32 \pi^{2} f_{a}} \epsilon^{\mu \nu \lambda \rho} \operatorname{Tr} G_{\mu \nu} G_{\lambda \rho}\right)
$$

$$
m_{a} \approx 6 \times 10^{-10} \mathrm{eV}\left(\frac{10^{16} \mathrm{GeV}}{f_{a}}\right)
$$

$f_{a} \lesssim 10^{9} \mathrm{GeV}$ and $f_{a} \sim 10^{11} \mathrm{GeV}$ are excluded
$f_{a} \gg 10^{12} \mathrm{GeV}$ is an especially interesting region:
would be the evidence that $\Omega_{D M}$ is fixed anthropically

Qu : is a fake symmetry broken by QCD plus $<10^{-10} \times \mathrm{QCD}$ common in a fundamental theory?

In string theory: YES!
antisymmetric forms
B_{2}
$C_{0,2,4}$ (IIA)
$C_{1,3}$ (IIB)
compactification

many (I00-I0000)
KK zero modes from topology
(cohomologies)
$\underset{\text { (Green-Schwarz anomaly cancelation) }}{\text { Chern-Simons coupling }}$ axionic couplings (Green-Schwarz anomaly cancelation)

String theory does NOT predict the QCD axion

light axions can be removed from the spectrum by orientifold planes, fluxes, branes
non-perturbative effects may generate contributions to the potential $>10^{-10} \times \mathrm{QCD}$

QCD axion is a constraint on string model building

In particular, SUSY preserving moduli stabilization is disfavored

cosmological moduli problem is back, we assume:

$$
H_{i n f} \sim 0.1 \mathrm{GeV} \quad T_{r h} \sim 10^{7} \mathrm{GeV}
$$

Taking seriously QCD axion and string theory one expects

many light axions

relevant phenomenological parameters: $m \quad f_{a}$

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2}(\partial a)^{2}-m^{2} f_{a}^{2} U\left(a / f_{a}\right) \\
m^{2} f_{a}^{2}=\mu_{U V}^{4} e^{-S}
\end{gathered}
$$

Taking seriously QCD axion and string theory one expects

many light axions

relevant phenomenological parameters: $m f_{a}$

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2}(\partial a)^{2}-m^{2} f_{a}^{2} U\left(a / f_{a}\right) \\
m^{2} f_{a}^{2}=\mu_{U V}^{4} e^{-S}
\end{gathered}
$$

in explicit examples one finds: $\quad f_{a} \sim \frac{M_{P l}}{S}$
"weak gravity conjecture":

$$
f_{a}<\frac{M_{P l}}{S}
$$

strong CP:
$S \gtrsim 200$

$f_{a} \sim M_{G U T} \quad m$:homogeneously distributed over log(energy)

model-dependence: $\quad \mathcal{L}_{\gamma}=\frac{C \alpha}{4 \pi f_{a}} a \epsilon^{\mu \nu \lambda \rho} F_{\mu \nu} F_{\lambda \rho}$
for slowly varying axion field

$$
\vec{D} \equiv\left(\vec{E}+\frac{1}{2} \frac{C \alpha}{\pi f_{a}} a \vec{B}\right) \quad \vec{H} \equiv\left(\vec{B}-\frac{1}{2} \frac{C \alpha}{\pi f_{a}} a \vec{E}\right)
$$

satisfy free wave eqns giving rotation of the CMB polarization

$$
\Delta \beta=\frac{C \alpha}{2 \pi f_{a}} \int d \tau \dot{a}=\frac{C \alpha}{2 \pi f_{a}}\left(a\left(\tau_{0}\right)-a\left(\tau_{\text {rec }}\right)\right)
$$

transforms E-mode into B-mode $\mathrm{BB}, \mathrm{BT}, \mathrm{EB}$ cross correlations

rotation angle max for $m_{a}<H\left(\tau_{\text {rec }}\right)$ and $m_{a}>H_{0}$
axion field primordial value set during inflation

$$
\begin{gathered}
\left\langle a\left(\tau_{\text {rec }}\right)\right\rangle \sim \pi f_{a} / \sqrt{3} \\
\Delta \beta=\frac{C \sqrt{N} \alpha}{2 \pi f_{a}}\left(a\left(\tau_{0}\right)-a\left(\tau_{\text {rec }}\right)\right)=\frac{C \sqrt{N} \alpha}{2 \sqrt{3}} \sim f e w \times 10^{-3} \sqrt{N}
\end{gathered}
$$

- constant over the sky
- independent of $f_{a}, H_{i n f l}$
- current bound: 0.035 Planck: 10^{-3} CMBPol: 10^{-4}

Axion DM behaves just like ColdDM (despite being a BEC) except at "small" scales where

Uncertainty Principle prevents density perturbation growth at

$$
\frac{k_{J}}{a}>\sqrt{H m}
$$

$$
k_{m} \sim\left(m H_{0}\right)^{1 / 2}\left(\Omega_{m} / z_{e q}\right)^{1 / 4} \quad k_{J} \sim\left(m H_{0}\right)^{1 / 2}\left(\Omega_{m}\right)^{1 / 4}
$$

$$
\frac{\Omega_{a}}{\Omega_{m}}=\frac{f_{a}^{2}}{3 M_{P l}^{2}} \frac{z_{m}}{z_{e q}} P\left(\theta_{i}\right)
$$

Future large-scale structure obs:

BOSS (SDSS III): S few \% at $k \sim 0.1 \mathrm{Mpc}^{-1} \quad m_{a} \sim$ few $\times 10^{-26} \mathrm{eV}$
$2 \mathrm{l} \mathrm{cm} \mathrm{tomography:} k \sim 10^{-2} \div 10^{3} \mathrm{Mpc}^{-1} \quad m_{a}<3 \times 10^{-18} \mathrm{eV}$
Note: starting to probe anthropic region

$$
S \sim 1 \quad \text { at } \quad m \approx 1.4 \times 10^{-20} \mathrm{eV} \frac{1}{P(\theta)^{2}}\left(\frac{3 M_{P l}^{2} / f_{a}^{2}}{10^{4}}\right)^{2}
$$

Kerr Black Hole Super-Radiance

Light axions allow Kerr black holes to efficiently spin-down via a quantum stimulated-emission process

Classical Penrose process for extracting M, J

$\delta M<0$

$\delta J<0$

Quantumly, a scalar field in a Kerr background can have bound states with $\operatorname{Im}(\omega)>0$

Damour etal; Zouros \& Eardly; Detweiler; Dolan

Only works for massive field with compton wavelength close to BH size

(numerical calculation from Dolan 0705.2880[gr-qc])

$$
\begin{aligned}
\tau_{\text {heavy }} & =10^{7} e^{1.84 R_{g} m} R_{g}, & & \text { for } R_{g} m \gg 1 \mathrm{a} \\
\tau_{\text {light }} & =24\left(\frac{a}{R_{g}}\right)^{-1}\left(R_{g} m\right)^{-9} R_{g}, & & \text { for } R_{g} m \ll 1 \\
\tau_{\text {optimal }} & =0.6 \times 10^{7} R_{g}, & & \text { for } R_{g} m \approx 0.4
\end{aligned}
$$

A slow process wrt R_{g} / c, fast compared to accretion

Result is that spin KE of BH gets transferred to orbital ang mom'm of axion cloud

Many potentially observable consequences: (work in progress)

Result is that spin KE of BH gets transferred to orbital ang mom'm of axion cloud

Many potentially observable consequences: (work in progress)

- Gaps in the "Regge plot" of BH spin vs. mass

Result is that spin KE of BH gets transferred to orbital ang mom'm of axion cloud

Many potentially observable consequences: (work in progress)

- Gaps in the "Regge plot" of BH spin vs. mass
- Changes in the LISA gravity-wave signal from late stage inspirals (changes in metric "templates" sensitivity 0.01-0.001\%)

Result is that spin KE of BH gets transferred to orbital ang mom'm of axion cloud

Many potentially observable consequences: (work in progress)

- Gaps in the "Regge plot" of BH spin vs. mass
- Changes in the LISA gravity-wave signal from late stage inspirals (changes in metric "templates" sensitivity 0.01-0.001\%)
- Observable radio emission signal from axion-photon conversion in accretion-disc supported magnetic field

Result is that spin KE of BH gets transferred to orbital ang mom'm of axion cloud

Many potentially observable consequences: (work in progress)

- Gaps in the "Regge plot" of BH spin vs. mass
- Changes in the LISA gravity-wave signal from late stage inspirals (changes in metric "templates" sensitivity 0.01-0.001\%)
- Observable radio emission signal from axion-photon conversion in accretion-disc supported magnetic field
- Accelerated growth of BH's due to increased accretion rate while in low-spin regime

Black hole Regge plot

Black Hole mass in units of $\mathrm{M}_{\text {solar }}$

Black Hole Physics

Limits from current data: several stellar mass highly-rotating BH 's "observed" also one $\sim 3 \times 10^{6} M_{\odot}$

Reach for the QCD axion

detector for the GUT scale QCD axion:
LMC X-I
$10 M_{\odot}, a / R_{g}=0.91$

$$
f_{a} \lesssim 2 \times 10^{17} \mathrm{GeV}
$$

$2 M_{\odot}, a / R_{g} \sim 1$ would probe string value $f_{a} \sim 2 \times 10^{16} \mathrm{GeV}$

In the next decade cosmo and astro observations will be exploring 23 orders of magnitude in energy

have a chance to observationally explore the topology of the compactification manifold

Asides:

- Multiplicity of axions might provide a chance to observationally check statistical studies of the string landscape/inflationary measures
- Could axions themselves be responsible for the scanning of the CC ?

Photi- \& Photini-verse

Many $U(1)$'s can also arise
RR antisymmetric forms

many (fewl0's-l00's)
KK zero modes from topology
(cohomologies)

$$
\text { eg, } X_{i}^{\mu}=\int_{\Sigma_{i}^{3}} C_{4}
$$

Inherits gauge symm from underlying IOd abelian gauge symm of RR field

Important property of $R R(I)$'s: typically no light charged states

due to fact that arise from multi-index fields that naturally couple to branes (Polchinski) not point particles

Uniquely couple to us via kinetic mixing with $U(1)_{Y}$

$$
\begin{gathered}
\Delta \mathcal{L}=-\frac{1}{4}\left(\begin{array}{ll}
X_{\mu \nu}^{i} & B_{\mu \nu}
\end{array}\right) \mathcal{F}\binom{X^{i \mu \nu}}{B^{\mu \nu}} \\
\mathcal{F}=\left(\begin{array}{cc}
f_{i j} & \epsilon_{i} \\
\epsilon_{j}^{T} & 1
\end{array}\right)
\end{gathered}
$$

\mathcal{F} non-decoupling \& sensitive to UV physics

BUT can be diagonalized (Holdom): b/c of absence of light charged states $U(I)$'s entirely decouple from us
only remnant: hypercharge norm changes: $\quad g_{Y} \rightarrow \frac{g_{Y}}{\sqrt{1-\sum_{i} \epsilon_{i}^{2}}}$

No signals from photons

BUT the photini are coupled

difference is that they are massive from susy-breaking

$$
\delta \mathcal{L}=i Z_{i j} \lambda_{i}^{\dagger} \not \partial \lambda_{j}+m_{i j} \lambda_{i} \lambda_{j}
$$

and both kinetic and mass-mixing with bino are possible

Mass eigenstates interact with MSSM states via "bino portal"

Let \tilde{N}_{I} be mass e'states $I, J=1, \ldots, n+4$

$$
\tilde{N}_{I}=f_{I J} \lambda_{J}
$$

$$
\lambda_{I}=\left(\tilde{B}, \tilde{W}, \tilde{H}_{d}, \tilde{H}_{u}, \tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{n}\right)
$$

Inter-photini decays

$$
f_{i 1} \simeq \epsilon_{i} \frac{m_{i}}{m_{1}-m_{i}} \quad f_{i(2,3,4)} \simeq f_{1(2,3,4)} \epsilon_{i} \frac{m_{i}}{m_{1}-m_{i}}
$$

$$
\Gamma^{Z^{*}}\left(\tilde{N}_{i} \rightarrow \tilde{N}_{j}+f \bar{f}\right) \simeq
$$

$\frac{\alpha_{W}^{2} \times \mathrm{MSSM} \text { mixings }}{192 \pi^{3}}\left(\epsilon_{e f f, i j}\right)^{4}\left(\frac{M_{i} M_{j}}{M_{B}^{2}}\right)^{2} \frac{(\delta m)^{5}}{m_{Z}^{4}}$

$$
\Gamma^{\tilde{l}}\left(\tilde{N}_{i} \rightarrow \tilde{N}_{j}+f \bar{f}\right) \simeq
$$

$\frac{\alpha_{W}^{2} \times \mathrm{MSSM} \text { mixings }}{192 \pi^{3}}\left(\epsilon_{e f f, i j}\right)^{4}\left(\frac{M_{i} M_{j}}{M_{B}^{2}}\right)^{2} \frac{(\delta m)^{5}}{m_{i}^{4}}$

Cascade decays at the LHC

Cascade decays at the LHC

Cascade decays at the LHC

Photini signatures at the LHC

Photino-Bino Mixing

Gottfried Wilhelm Leibniz
The Principle of Plenitude:
"This best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."

