Field Interference of Magnets in the Collector Ring

Oleksii Gorda

Outline

- > Problem of magnetic field coupling
- Sources of field interference of magnets in the CR storage ring
- Magnetic field computations
- Effect on beam dynamics
- Conclusions

Field in magnets

- shape of the field fall-offs depends on the aperture of magnets
- fringe field effect can be estimated easily

Field coupling

What is going on in the gap between tightly located magnets?

Collector ring CR for FAIR

Dipole-Quadrupole section

- short distance between the magnets (\approx 50cm)
- huge aperture of magnets

Interference between edge fields of magnets

Corrector magnets

About 4-5 correctors per quarter of the ring will be installed for closed orbit corrections

H

Additional interference due to corrector iron

Joint QUASAR and THz Group Workshop on Accelerator Science and Technology, 09 September 2009

Magnetic field computation

Experimental measurements
no magnets, no measuremets

Computer simulations

- OPERA software was used

CR dipole magnet

		Bending Curvatur Maximur	Bending angle- 15 degCurvature radius- 8.125 mMaximum field- 1.6 T		
		'▲ 7	n Absolute value, 7	F Relative to b_1 value	
July]	1.64	1.0	
		2	2 7.190039E-04	4.367172E-04	
			5 7.724153E-05	4.691588E-05	
Field quality: By=1.6000±0.0003 T			-5.067709E-05	1.130494E-05	
	-		5 2.582382E-06	1.568518E-06	
			7 1.690610E-05	1.026863E-05	
		8	-3.194641E-06	-1.940399E-06	
	Integral field harmonics at R	-70mm	-3.397433E-06	-2.063574E-06	
			0 2.545534E-06	1.546137E-06	

CR quadrupole magnet

Effective length	-	1.0 m
Maximum gradient	-	4.7 T/m

n	Absolute value, T/m	Relative to b_1 value		
2	4.2	1.0		
6	4.104426E-04	9.772442E-05		
10	-3.847831E-04	-9.151602E-05		
14	2.576344E-04	6.134152E-05		
18	-0.756387E-04	-1.800921E-05		

Integral field harmonics at R=150mm

"Single" 3D-model

Effect on beam dynamics

- Single particle tracking
- Dynamic aperture calculations
- Tunes and resonances
- Take computed field errors into account

Dynamic aperture of the CR

Antiprotons

lons

Effect of field interference

Slight increase of dynamic aperture is observed when taking the field interference effect into account

Tune calculations

Q – number of oscillations per turn

Cross of resonance lines results in an unstable motion of particles

Tune spread is changed due to field interference effect, some dangerous resonances are avoided

Conclusions

- Magnetic field simulations are performed to study and quantify the field interference between the dipole, corrector and quadrupole in the CR
- > No harmful effect on beam dynamics is found
- > dynamic aperture is slightly increased due to the compensation of the field errors with the interference effect

That's all! Thanks for your attention!