

Joint QUASAR and THz Group Workshop on Accelerator Science and Technology

Study of

Superconducting Accelerating Structures for Linac Applications

Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland <u>marcel.schuh@cern.ch</u>

- Superconducting Proton Linac (SPL)
 HOM Bunch Tracking Simulation Code
 Latest Results
- Conclusions & Outlook

QUASAR & THz Group WS

THE SPL PROJECT

https://twiki.cern.ch/twiki/bin/view/SPL/WebHome

Parameter	LP SPL	HP SPL	
Energy [GeV]	4 5		
Beam power [<i>MW</i>]	0.19 4 - 8		
Rep. frequency [Hz]	2 50		
Bunch frequency [MHz]	352.2		
Operation frequency [<i>MHz</i>]	704.4		
Cavities ($\beta = 0.65/\beta = 1.0$)	.0) 54/152 54		
Physical length [m]	~430	~500	

Milestones:

- 2006: CDR
- 2012: TDR
- 2019: Operation LP

UASAR

3

Neutrino

HIGHER ORDER MODES (HOMS)

- Present in each cavity
- Divide modes in monopole, dipole ...
- Characteristics depend on cavity shape
- Excited by the beam itself ($V \propto I \cdot R/Q$)
- Bunch train structure is important
- Interact with cavity and beam

QUASAR BASIC LINAC SIMULATION MODEL

- Drift kick model with **exact** cavity spacing
- E₀T(β) via field integration (**only sync. particle**)
- Phase and field controlled individually for each cavity
- Transfer matrix between cavities (transverse) using phase advance per period (**no magnets modeled**)
- Longitudinal and transverse plane are independent
- Bunch (point charge)/particle tracking without space charge effects

5

WASAR BASIC HOM MODEL

- One HOM per cavity (monopole or dipole)
- Gaussian or Uniform HOM frequency distribution with no change over time
- $R/Q(\beta)$ applied in each cavity according to beam β
- Global Q_{ex}
- Load HOM via bunch tracking (Bunch \Leftrightarrow HOM interaction)

QUASAR & THz Group WS 6

QUASAR BEAM INPUT PARAMETERS

Basic beam settings used in all simulations:

Parameter	Mean	Variance	Simulation
Bunch period [ns]	$1/f_b \approx 3$	0.00315	long
Pulse length [ms]	1.0	0	both
Period length [ms]	20	0	both
Beam current [mA]	40400	3%	both
WInput [MeV]	160	0.078	long
Tr. position [mm]	0	0.3	trans
Tr. momentum [mrad]	0	0.3	trans

https://twiki.cern.ch/twiki/bin/view/SPL/SplHom

QUASAR & THz Group WS 7

VUASAR HOMPARAMETER

Transverse setup

Parameter \Section	Medium ß	High β
f _{HOM} [MHz]	1015±1	915±1
R/Q(β) [Ω*] (avg)	60	48

* linac def.

Compare phase space (ε) of one pulse (350.000 bunches) with (loaded HOM) and without HOM interaction at the exit of the linac.

TRANSVERSAL QUASAR

QUASAR & THz Group WS

09.09.09 mschuh@cern.ch

Effect of different parameters:

Parameter	LONG	TRANS	
frequency spread			
machine lines			
I · R/Q			
charge scatter		\rightarrow	
chopping	tbc		
input phase space	\rightarrow	\rightarrow	

QUASAR & THz Group WS

10

09.09.09

QUASAR CONCLUSIONS & OUTLOOK

- Tools developed to simulate influence of HOMs
- Simulations show HOM damping seeming to be necessary in order to provide a high brilliance beam!
- The limit of Q_{ex} based on the presented results: 10⁷!
- Further simulations:
 - Chopping (longitudinal)
 - Klystron and field errors

09.09.09

THANK YOU!

Questions?

QUASAR & THz Group WS

12

09.09.09

QUASAR STATISTIC: 1000 LINACS

Influence of input beam and cavity to cavity frequency distribution

QUASAR & THz Group WS

QUASAR

HOM CHARACTERISTICS

HOM Parameter needed in simulation:

• HOM frequency f_n

• $R/Q(\beta)$ map:

14

QUASAR & THz Group WS

TRANSVERSAL: CHOPPING

QUASAR

QUASAR & THz Group WS

15

WASAR BEAM HON INTERACTION

Monopole modes:

- Each bunch sees half of its self-induced voltage V_b:
- Energy error caused by HOM: 0

$$dU_H = e\left(\Re(V_H)\cos(\omega_H dt) - \Im(V_H)\sin(\omega_H dt)\right) - \frac{1}{2}V_b$$

Iteration over linac:

 $dE^{(n+1)} = dE^{(n)} + dU_{BF} + dU_{H}$ $dt^{(n+1)} = dt^{(n)} + (dt/dE)_E \cdot dE$

QUASAR & THz Group WS 16

09.09.09 mschuh@cern.ch

- Particle velocity: $\beta < 1$
- Energy error causes arrival time / phase error:

$$dt = -\frac{L}{c \cdot m_0 c^2 \cdot (\gamma^2 - 1)^{3/2}} dE$$

 Phase error causes a different energy gain in next cavity:

$$dU_{RF} = eV_{RF}^* \cdot \cos(\phi_s + \omega_{RF}dt) - \Delta U$$

QUASAR TRANSVERSE BEAM DYNAMIC

- Transfer Matrix between cavities
- Bunch induce a imaginary voltage:

$$\Delta V_{\perp} = ixq \frac{\omega^2}{c} (R/Q)_{\perp}$$

HOM kicks bunch/particle - momentum 0 change:

$$\Delta x' = \frac{e\Re(V_{\perp})}{c \cdot p_{\parallel}}$$

QUASAR

OBSERVED DIPOLE KICK

QUASAR & THz Group WS

19

09.09.09

QUASAR HON VOLTAGE DISTRIBUTION

CERN

QUASAR & THz Group WS

20

09.09.09

WASAR CAVITY MODELING

- 2d Superfish model
 3d HFSS model
 - half cavity length
 - quarter rotation
 - boundary conditions

QUASAR & THz Group WS

21

09.09.09

QUASAR CAVITY GEOMETRY

Cavitiy shapes at 704.4MHz (symmetrical):

CERN

QUASAR & THz Group WS

22

09.09.09

QUASAR CAVITY GEOMETRY

Cavitiy shapes at 704.4MHz (symmetrical):

CERN

QUASAR & THz Group WS

22

09.09.09

VUASAR MONOPOLE MODES

β	Mode	f [MHz]	HFSS (R/Q)† [Ω]	Superfish (R/Q)† [Ω]
0.65	TM ₀₁₀ 4/5π	703.7	1	1
0.65	TM ₀₁₀ π	704.4	318	330
0.65	TM ₀₁₁ 3/5π	1765	3	4
0.65	TM ₀₁₀ 4/5π	1774	4	3
0.65	TM ₀₁ cuttoff	2550		
1	TM ₀₁₀ π	704.4	525	562
1	TM ₀₁₁ 4/5π	1328	37	36
1	TM ₀₁₁ π	1332	137	135
1	TM ₀₂₁	2090	25	21
1	TM ₀₁ cuttoff	1639		
⁺ linac definition				

CERN

QUASAR & THz Group WS

23

09.09.09

DIPOLE MODES

β	Mode	f [MHz]	HFSS (R/Q)† [Ω]
0.65	TM ₁₁₀ 2/5π	1020	19
0.65	TM ₁₁₀ 3/5π	1027	28
0.65	TM ₁₁₀ 4/5π	1033	6
0.65	TE ₁₁₁ 1/5π	1270	13
0.65	TE ₁₁ cuttoff	1952	
1	ΤΕ ₁₁₁ 3/5π	915.1	18
1	TE ₁₁₁ 4/5π	939.8	33
1	TE ₁₁₁ π	966.4	13
1	TM ₁₁₀ 3/5π	1014	19
1	TE ₁₁ cuttoff	1255	

⁺linac definition

QUASAR

QUASAR & THz Group WS 24

09.09.09