

Halo und tail generation for low energy electron accelerators

Universität Karlsruhe (TH) Research University · founded 1825

Presented by: Miriam Fitterer

Acknowledgements: Erik Adli, Helmut Burkhardt, Barbara Dalena, Anke-Susanne Müller, Giovanni Rumolo

www.kit.edu

Outline

- Halo and tail generation:
 - Motivation
 - Sources of halo and tail generation
- - CLIC two beam acceleration technique
 - Challenges of the CLIC drive beam halo and tail simulation
 - Analytical estimates and Tracking results
 - Summary
 - Outlook

Motivation

Miriam Fitterer - Halo and Tail Generation for Low Energy Linear Accelerators GSI 09.09.09

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University · founded 1825

Motivation

What is the halo?

HALO BEAM

What is the motivation behind halo studies?

- Halo particles can be a major source of background and radiation
- Even if most of the Halo particles are stopped by collimators, the secondary muon background can still be significant
- Halo and tail generation can lead to significant beam losses in all parts of an accelerator
- ➔ Halo and tail generation studies are needed for design studies to estimate and minimise any potential performance limitations from this source
- ➔ Halo and tail simulation with PLACET-HTGEN:

HTGEN Generation of Halo Particles

PLACET Beam and Halo tracking

Sources of halo and tail Generation

Particle processes:

- Beam gas scattering (Mott scattering and Bremsstrahlung) and multiple scattering
- Compton scattering
- Touschek effect and intrabeam scattering
- Electron and ion cloud effects
- Space charge effects
- Synchrotron radiation

Optics related effects:

- Mismatch
- Coupling
- Dispersion
- Nonlinearities

Various:

- Noise and vibrations
- Dark currents
- Wakefields
- Spoiler scattering

currently included in PLACET-HTGEN

CLIC

Miriam Fitterer - Halo and Tail Generation for Low Energy Linear Accelerators GSI 09.09.09

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University • founded 1825

structures at high frequency

(12 GHz) are likely to achieve this gradient, but do not provide sufficient RF power for this high gradient

Two-beam-acceleration technique:

Long RF pulses with low High current electron beam Power stored in frequency (long trains+bunches) **Electron beam** manipulation Short RF pulses with high High current electron beam Power extracted in frequency and gradient (short trains+bunches) resonant structures

CLIC – RF power production

- To reach the design energy of 3 TeV the accelerating gradient has to be very high (100 MV/m)
- Superconducting technology is limited to lower gradients
 - Room temperature travelling wave

CLIC – Compact Linear Collider

Challenges of the CLIC drive beam halo and tail generation

CLIC drive beam parameters

Parameter	Unit	Value
Drive beam sector length	m	1053
mean initial beam energy	${\rm GeV}$	2.40
mean final beam energy	GeV	0.40
numb. of part. per bunch	10^{9}	52.5
$\epsilon_{ m N,y,initial}$	$\mu{ m m}$	150
$\epsilon_{ m N,y,final}$	$\mu{ m m}$	334

Drive beam is a low energy and high intensity beam

HTGEN was written for high beam energies

Low energy validation of PLACET-HTGEN

HIGEN

Collective effects like wakefields become important

Implementation of the effect of transverse wakefields of the beam on the halo is needed for a realistic halo tracking

Halo and Tail Generation for the CLIC decelerator

Sources of halo and tail Generation

Particle processes:

- Beam gas scattering (Mott scattering and Bremsstrahlung) and multiple scattering
- Compton scattering
- Touschek effect and intrabeam scattering
- Electron and ion cloud effects
- Space charge effects
- Synchrotron radiation

Optics related effects:

- Mismatch
- Coupling
- Dispersion
- Nonlinearities

Various:

- Noise and vibrations
- Dark currents
- Wakefields
- Spoiler scattering

included in decelerator simulation with PLACET-HTGEN

Beam gas and Compton scattering

residual gas constitution: 40% H₂O, 40% H₂, 20% (CO₂, CO and N₂)

for simplicity gas equivalent of N₂

Tracking results

Model:

Beam: sliced beam model with a reduced number of bunches (200) Halo: particle beam model

Strongest halo generation is expected for the longest decelerator (1053 m)

In tracking included: offset of the beam, misalignment of PETS and quadrupoles, wakefield effects

Miriam Fitterer - Halo and Tail Generation for Low Energy Linear Accelerators GSI 09.09.09

Tracking results

For in c

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Summary and Outlook

Miriam Fitterer - Halo and Tail Generation for Low Energy Linear Accelerators GSI 09.09.09

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University • founded 1825

Summary ...

- Extension of PLACET-HTGEN to lower beam energies
- Implementation of halo tracking in the PETS including transverse wakefield effects
- Halo studies for the CLIC drive beam:
 - Analytical estimates indicate very small halo generation
 - Simulations predict very few losses

... and Outlook

Implementation of halo tracking including wakefield effects in RF cavities is completed (Barbara Dalena)

Halo tracking now implemented for all present elements of CLIC

Halo and tail generation simulations for TBONE:

Thanks!

Universität Karlsruhe (TH) Research University • founded 1825