

RF Characterization of Superconducting Samples

Tobias Junginger

Tobias.Junginger@cern.ch

14th International Conference on RF Superconductivity, Berlin 20-25 Sept 09

RF Characterization of Superconducting Samples

" It is not yet clear what surface properties are the most important for achieving high Q-values and high peak RF fields. The answer to this question will be provided by a careful correlation between microwave cavity measurements and surface studies on small samples processed at the same time."

A. Septier – 1st Workshop on RF superconductivity

This talk:

- Focus on microwave cavity measurements
- Present TE cavities and 4 modified devices
- and 1st results on Quadrupole Resonator

- *R_s* can be determined by measuring *Q₀ Q₀=G/R_s R_s* may vary strongly over the cavity surface
- More convenient: Investigation of small samples
- One way TE cavity with demountable endplate
 - Large size concerning frequencies of interest for accelerator applications
 - Same field value on both endplates

A. Canabal et al.

- Mushroom form and TE₀₁₃-like mode yield higher fields on the sample than anywhere else the surface
- X-band frequency
- Small sample sizes (ø≈75 mm)

G. Ciovati et al.

DC System

B. Xiao et al.

- Sapphire rod attached inside the cavity lowers resonance frequency
- Sample thermally decoupled from the cavity
- The calorimetric measurement technique is sensitive to the sample surface only while being insensitive to other cavity losses.

Quadrupole Resonator at CERN

E. Mahner et al.

- Resonator excited in a TE_{21} like mode
- Samples attached in a coaxial structure
- Calorimetric measurements
- Resonant frequency 400 MHz (LHC)

E. Mahner et al.

Collaboration with W. Weingarten

Q value of resonant modes at RT

Comparison of the Different Devices

	Mushroom	Coaxial	Sapphire loaded	Quadrupole
$\frac{H_{max,sample}}{H_{max,cavity}}$	1.75	2.38	1	1.2
<i>f</i> [GHz]	11.43	3.544	7.5	0.4
<i>R</i> [mm]	41.3 / 25	57.4	25	105
Sample size A [cm ²]	44	22	19.6	44
Calorimetric system	No	No	Yes	Yes

First Results on Quadrupole Resonator

Collaboration with W. Weingarten

- Reactor grade bulk niobium sample
- Chemically etched
- 400 MHz

First Results on Quadrupole Resonator

Collaboration with W. Weingarten

applied field

- Reactor grade bulk niobium sample
- Chemically etched
- 400 MHz

100000

10000

Collaboration with W. Weingarten Special thanks to G. Ciovati

Penetration depth as a function of temperature

First Results on Quadrupole Resonator

Collaboration with W. Weingarten

Thermal conductivity as a function of temperature

- A convenient way to examine RF properties of superconducting materials is the investigation of small samples
- Impractical large size and inconvenient field configuration of TE_{011} cavities with demountable endplate lead to the development of several new devices for RF characterization of superconducting samples
- Quadrupole resonator is refurbished and enables to measure
 - -Surface resistance
 - -Critical RF field
 - -Penetration depth
 - -Thermal conductivity
 - -at 400, 800 and 1200 MHz

RF Characterization of Superconducting Samples

- A variety of systems have been developed during the past 20 years.
- Each has its unique capabilities.
- None has yet become a
- "workhorse" for systematic sample characterization. C. Reece

