The role of PS/SPD in the LHCb trigger

Elias Lopez, Hugo Ruiz

Thanks to O. Deschamps

SPD/PS use at LO

- **PS:** confirm ECAL clusters as electromagnetic (ECAL: $1.1 \lambda_1$)
- SPD:
 - distinguish e γ
 - multiplicity:
 - GECs (very uncertain future)
 - − Under study: trigger for $\gamma\gamma \rightarrow \mu\mu$ for lumi: 2 μs + low SPD multiplicity

Last standalone (without HLT1) L0 optimization (~February!) on few channels incl. $B_s \rightarrow \phi \gamma$, $B^+ \rightarrow K^+e^+e^-$:

LO line	E _T > (MeV)	Rate (KHz)
е	2320	170
γ	3060	65
π^0 loc	4740	95
π^0 glob	4520	85
hadr	4040	600

Later, thresholds become similar, but no ee channel!

Difficulty for SPD @ LO: $\gamma \rightarrow e^+e^-$

- Re-opt TDR material budget: 0.4 X_o magnet-Calo
 - Underestimation: only M1 is 0.265 instead of the 0.22 in the simulation
- Probability of photon survival: $e^{-\frac{7}{9}0.45} \sim 70\%$
 - Btw, this is what makes the SPD useful offline
- Current γ and e confirmation at HLT1 uses:
 - All L0-e and L0- γ clusters for photon alley
 - But only L0-electron for electron alley

MC samples

- 988 offline-selected $B_s \rightarrow \phi \gamma$
- 1115 offline-selected $B^+ \rightarrow e^+e^-K^-$
- 694 offline-selected $B \rightarrow e^+e^-K^*$
- 440k minimum bias

	Ε _Τ ^γ >	Ref
$B_s \rightarrow \phi \gamma$	2.8 GeV	LHCb-PHYS-2007-030
$B^0 \rightarrow K^*e+e-$	0.3 GeV	Marie-Helene Schune http://indico.cern.ch/contributionDisplay.py?contribId=2&confld=26414

Efficiency

Rate

Current HLT1 alleys

• If e and γ threshold are similar:

 My interpretation from yesterday's Mariusz talk at http://indico.cern.ch/conferenceDisplay.py?confld=67047 ⇒No straight-forward to estimate effect of SPD/PS on timing

Efficiency vs rate, electrons

Efficiency vs rate, photons

No dfifference between both plots \Rightarrow only the true γ is able to trigger L0-em

N Candidates/accepted event

Ratio em PS/SPD off/on

N candidates/second, electrons

 Important for the trigger: amount of work to be done by HLT1 to reach a given efficiency

N candidates/second, photons

- How does the situation change with:
 - Higher lumi (more hadrons will try to fake em showers)?
 - No M1: less conversions?

N candidates/second, photons

$B_s \rightarrow \phi \gamma$, varying PS threshold

Rejecting if more than 2 PS cells fired (as in current implementation)

Not rejecting

N candidates/second, electrons

B →e+e-K*, varying PS threshold

Rejecting if more than 2 PS cells fired (as in current implementation)

Not rejecting

MC generation

Tested 100 evts/sample of min bias of:

1) DC06 as reference

2) MC08

- Same multiplicity for all reco particles but muons: x 0.7.
- $\gamma \rightarrow \text{ee x 2}$

3) MC08, lumi x10

- interactions $1.4 \rightarrow 6.8$ (x4.8)
- multiplicity x4.5, for all particle types

MC generation

4) MC08, lumi x10, no M1

 $- \gamma$ → ee : x0.2 in 11.8m<z<12.3m

5) MC08, lumi x 10, no M1, PS, SPD

LOCalo candidates:

- e: 1.8 ± 0.1, γ: 0.53 ± 0.05 → e+γ: 5.44 ± 0.16
- hadron: $8.4 \pm 0.2 \rightarrow$ hadron: 9.8 ± 0.2

 Asked Gloria what are reminding checks to be done

Conclusions / Plans

- On the way of understanding role of PS/SPD for triggering
 - Optimization of PRS threshold and SPD/PS masks?
 - Some help from HCAL in cleaning EM clusters?
- Not the only consideration! e/γ id without PS?

Reminding checks on high lumi MC? Generate!

BACK-UP

...
$$\gamma \rightarrow e^+e^-$$

- Another source of "inefficiency" on γ 's: random coincidence
 - Multiplicity ~ 33 @ $2 \cdot 10^{32} \Rightarrow$ ~ 330 @ $2 \cdot 10^{33}$
 - Occup \sim 330/6000 \sim 5.2% (max \sim 16%)

MC matching in $B_s \rightarrow \phi \gamma$

Distance between L0 clusters and MC truth extrapol:

