Update on Pile Up predictions

- The only indications on the pile up at high luminosity come from an approximative simulation of the effect
- Use Boole generated events at $2 \times 10^{32} \mathrm{~cm}^{-1} . \mathrm{s}^{2}$
- Select single collision events
- Extract occupancy for specific cells in ADC counts for min-bias events
- Generate a MC event at any luminosity by « adding» the contributions of N «single collision events »
- Event per event get an appropriate random N (depends on the luminosity)
- Take into account the LHC bunch structure (identical to nominal)
- Extract random occupancy according to Boole MC probability densities
- The conclusion is that the photon resolution is degraded by the pile up. The effect is not negligible
$\frac{\sigma(E)}{E}=\frac{0.1}{\sqrt{E}} \oplus 0.015 \oplus \frac{0.175}{E \theta}($ Pile up $) \oplus \frac{0.010}{E \theta}($ Electronics $)$

Signal in 12 cells on the ECAL surface Min-bias events

- The same pile up events as previously (Gauss - kept for comparison)
- The emulation of the pile up by adding up several single collision min-bias events (not Gauss and up to 2×10^{33}).

LHCb

Comparing predictions up to $5 \times 10^{32} \mathrm{~cm}^{-2} . \mathrm{s}^{-1}$

Number of collisions per crossing in the high luminosity simulation (private code) for 2×10^{32}, $5 \times 10^{32}, 10^{33}$ and $2 \times 10^{33} \mathrm{~cm}^{-2} . \mathrm{s}^{-1}$ (histo). Number of collisions in the two Gauss MC samples at 2×10^{32} and $5 \times 10^{32} \mathrm{~cm}^{-2} . \mathrm{s}^{-1}$ (dots).

RMS of the signal/PileUp in 12 (3x3)-clusters on the ECAL surface (Min-bias events) for luminosities of $2 \times 10^{32}, 5 \times 10^{32}, 10^{33}$ and $2 \times 10^{33} \mathrm{~cm}^{-2} . \mathrm{s}^{-1}$.
This is evaluated around the 12 points by simulating 9 similar cells.

