Time alignment and calibration of the SPD with first collisions

Miriam Calvo, Ricardo Vazquez, Marc Grabalosa et al. from

Outline

Introduction

- When the SPD is needed?

• Time alignment

- Requirements
- Status
- Plans

Calibration

- Requirements
- Status
- Plans

When the SPD is needed?

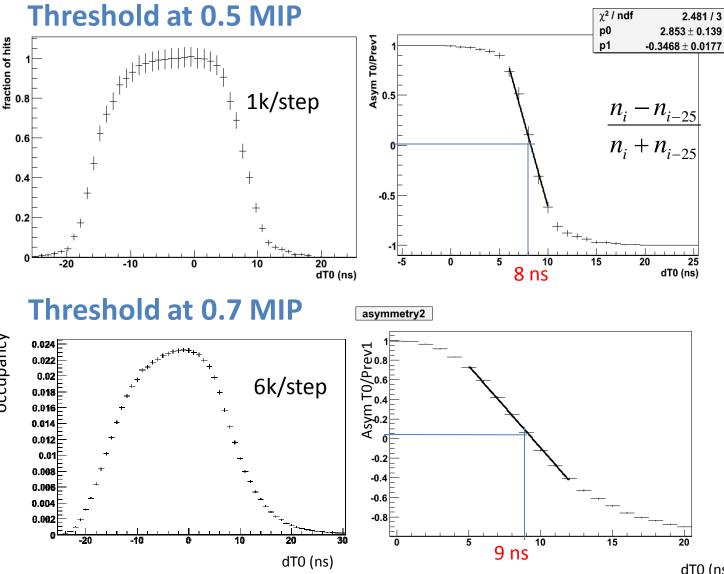
• At the very beginning, only interaction trigger at LO

LHC scenario	Low	Low	Low	Low	Mid	High	High	High
Bunches: LHCb/Total	1/2	19/43	19/43	68/ 156	68/156	468/468	468/468	468/468
$\nu(\sigma^{\text{Tot}} = 93.90 \text{ mb})$	0.20	0.20	1.00	0.20	1.00	0.50	1.00	1.34
Rates (kHz)								
bb-xings	11.2	213.7	213.7	764.7	764.7	5263.0	5263.0	5263.0
eb,be-xings	11.2	269.9	269.9	989.6	989.6	0.0	0.0	0.0
ee-xings	40057.5	39596.4	39596.4	38325.7	38325.7	34817.0	34817.0	34817.0
xings MC-Mbias	2.0	38.7	135.1	138.6	483.4	2070.8	3326.9	3884.9
Maximum L (10 ³¹)	0.002	0.046	0.228	0.163	0.814	2.802	5.605	7.511
Visible xings (kHz)	1.2	22.1	89.9	79.2	321.9	1258.0	2215.3	2732.0
% single pp-vis	94.6	94.6	75.2	94.6	75.2	87.0	75.2	67.8
$\mu / vis (\sigma^{\mu} = 51.30 mb)$	1.06	1.06	1.30	1.06	1.30	1.14	1.30	1.41
L0-rate (kHz)								
L0-µ (0.8 GeV)	0.028	0.539	2.688	1.930	9.619	33.168	66.205	88.583
L0-hadron (2.5 GeV)	0.149	2.828	13.912	10.120	49.789	173.145	342.668	455.579
L0-e (1.5 GeV)	0.063	1.197	5.943	4.283	21.269	73.514	146.382	195.508
L0-γ (1.5 GeV)	0.041	0.787	3.917	2.816	14.018	48.379	96.479	129.003

for calibration of L0 $e&\gamma$ triggers

Hans Dijkstra@ PPG http://indico.cern.ch/subContributionDisplay.py?subContId=0&contribId=6&confId=33306

Occupancies


- Vary a lot from cell to cell
- The cell with minimum occupancy defines the number of events needed for any procedure

	E (TeV)	В	Sample	Occ. Min. (%)	Occ. Max. (%)	
2010	0.45	Off	>0 interact.	0.12	4	
	5	Off	>0 interact.	0.3	10	
	5	On	>0 interact.	0.14	7	
No- minal	7	On	40 MHz	0.09	2.5	
	7	On	>0 interact. (14 MHz)	0.24	6.8	
	7	On	L0 (1 MHz)	0.3	17	
	× 10					

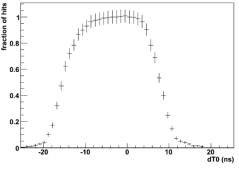
Time alignment: **objective**

- Objective: time-align the detector to the intrinsic precision of the asymmetry method (1-2 ns)
 - Time-align. not an issue in 2010, > 50 ns bunch spacing
 - Physics: only requirement is no signal in previous or next
 - **But** we want to adjust it finely first, because:
 - Avoids having a 2D time alignment calibration problem later
 - Phases does not change with time
 - Changes in some hardware may affect it: cables, CB 1-2 ns
 - It requires small amounts of data
- Need to time-align 100 VFE boards (groups of 64 channels)

SPD time alignment – asymmetry method

JUCUDAIIC

•We need +-1 TAE (this remove need for step-to-step normalization)

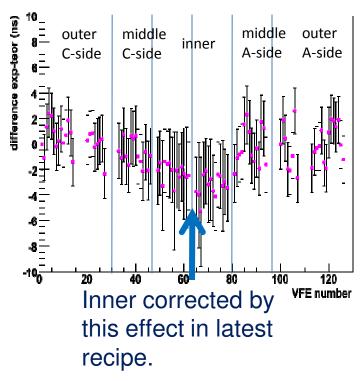

•We will see a convolution of curves for 64 channels in a VFE

•Working in automatic fitting for 100 VFEs...

dT0 (ns)

Time alignment: procedure without TAE?

- It could be possible to time-align SPD without TAE: scan on phases, fit to MC prediction
- Problem: need to normalize each step
 - Different duration of runs
 - Changes of lumi
 - Beam backgrounds
- Solution: split detector in two halves
 - Split into even/odd VFE/crates, not A and C sides, to be safer under local changes in conditions
- But: much easier and faster with TAE

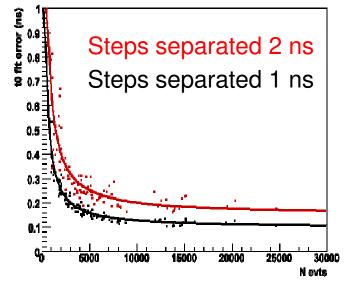


Time alignment: status

- **Cosmics:** synchr. SPD-ECAL to ~ 3 ns.
 - From TED, cell-to-cell ECAL ~ 2 ns

according to http://indico.cern.ch/conferenceDisplay.py?confld=62291

- Cosmics in an SPD VFE come from large area of ECAL ⇒ VFEs synchronized to the average of wide regions in ECAL
- Can we improve by phase scan on next TED run? (Keeping half SPD stable for trigger)
 - Problems:
 - Non uniform intensity: difficult to interpret
 - Non-nominal HV
 - BUT: this will allow rehearsing many of the procedures

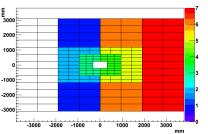


Time alignment: **plan**

- 1) First rough scan to find global SPD-LHC clock synchronization
 - Set current cosmic delays + $\cos\theta$ correction
 - Expect that it will be done for the whole CALO/LHCb?
 - Precision of ~3ns?
- 2) Then perform the real scan around this point to time align VFE by VFE

Time alignment: data required

- With TAE:
 - 10 steps of >1K events separated by 2 ns enough to get target precision
 - A few seconds per step at 600Hz
- Without TAE
 - Increase in the number of events/step
 - x2 for control and scan sides



Assumes min occ = 0.24%

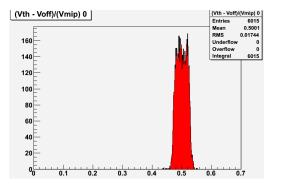
Time alig.: implementation options

1) With the CROC (by crate):

- − ✓ Easy
- × Need to correlate with PS

- Need to convert observed delay on CROCs into VFE phases
- X Very bad granularity to separate reference and scan halves, only a problem if not using TAE

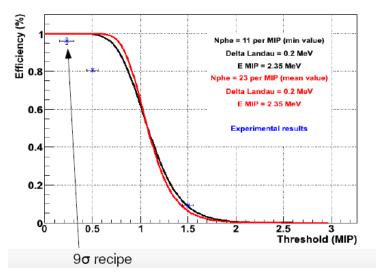
2) With the internal VFE phase:

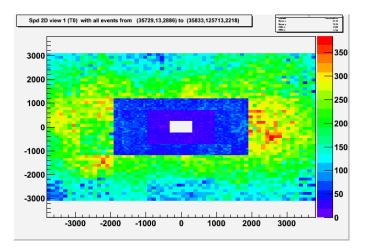

- − ✓Independent from PS
 - High granularity for normalization (only relevant without TAE)
- × Need a procedure to automatically
 - Configure VFE and FE
 - Invert the MIERDA line
- × Configuration of a new step takes time (10'?)

Time alignment: **to do**

- Ned to find technical solutions and rehearse:
 - The scanning procedure itself (including at TED)
 - Obtaining the phases
 - Fitting procedure
 - (If the scan is done with the CROC) Converting the results into phases to be setup in the VFE
 - And in some cases inversions of MIERDA signal

Calibration: objective


 Objective: resolution on the MIP position < resolution threshold setting in electronics = 5% MIP Say 2% of the MIP (or 4% of the threshold).



- BTW: need a strategy: what do we need to equalize per SPD cell? Electron efficiency?
- Need to calibrate **6016 channels**

Calibration: status

- Gain computed theoretically, then checked with cosmics by:
 - Setting the thresholds at 0.25, 0.5, 1.5
 MIPs, taking ~ 1 M events at each point
 - Comparing efficiency from expectation of a Landau x Poisson
- Lots of filtering needed (arrival time, angle) ⇒ statistics only enough to perform comparison for whole SPD
- But things look uniform in 2D plot ⇒
 calibration should be ~ reasonable
 for all VFEs

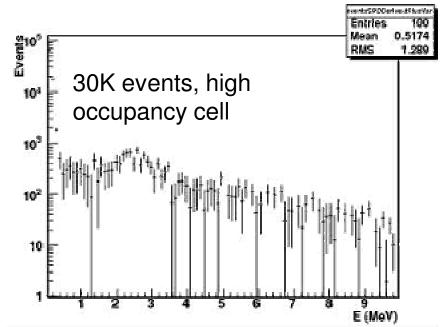
(Calibration on nominal conditions)

- You may remember the SPD can be calibrated within a few minutes of dedicated calibration run
 - But: that is for
 - Nominal luminosity
 - Running a dedicated task at EFF at 1 MHz
 - So we are not talking about that today

Calibration: plan

• Procedure:

– A) Without tracks:


- Apply different thresholds at different fills/runs
- Count occupancy in each step, normalized to reference half of SPD
- Look for the MIP peak

- B) With tracks:

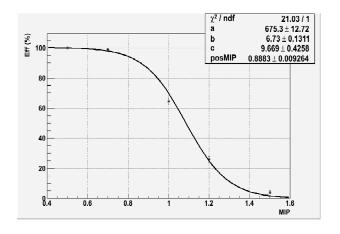
- Perform an efficiency vs threshold scan similar to that done with cosmics
- Compare it with theoretical expectation
- Recompute MIP

A) Calibration without tracks

- MIP peak is quite humble above background
- Large amounts of data required
 - Long time
 - Hard to analyse

Steps	Evts / subcl lowe	Time/step			
	Outer	Middle	Inner	@ 600Hz	
14	33M	22M	12M	38h	
8	37M	37M 25M		43h	
Assumes min occ = 0.24%					

Remember: need to do it twice factor 40 less for some cells


B) Calibration with tracks

• Preliminary: 250 tracks pointing

to a cell at each step, allow $\sigma(MIP) \sim 2\%$ (5 steps)

- SPD "efficiency" is:
 - 98% from theoretical computation
 - 95% using cleaned long tracks
 - 82% using cleaned T tracks (purity? bad extrapolation?)
 - Using M1: no gain in purity, but maybe in quality of extrapolation?

lowest occup. Cell	Type of track	# per min bias	# after cleaning	Evts needed / subchannel	Time/step @ 600 Hz		
	Long	12	0.2	10 M	4.7 h		
Assumes min occ =	т	22	8	0.2 M	6 min *		
0.24%	* For T tracks need to understand effect of impurity on fit						

Calibration: technicalities

- Avoid changing HV, only thresholds when possible
- W/o tracks need half SPD to normalize
- The change of thresholds in all the VFEs takes 30 seconds
- Probably will not know if we will have tracks or not beforehand:
 - Change thresholds often rather than take many million events at one threshold
 - If no tracks for a while, maybe worth calibrating VFE by VFE (common components of gain: HV, PMT).

Calibration: to do

- Ned to find technical solutions and rehearse:
 - Best choice of number of steps and events per step for scan (w/o tracks, w tracks)
 - Transform comparison of observed and theoretical curves into a measurement of the gain
 - Transform measurement of the gain into a new threshold to be set

Two last steps

- 1) Recheck time-alignment at the end
 A single run with TAE is enough
- 2) The SPD electronics subtracts a tuneable fraction of signal in previous BX to correct from spill-over, now set at 20%
 - Check if there is too much signal in next in some cell, a run with TAE is required
 - If so, change the subtraction factor

Conclusions

- At LHC start-up, SPD not needed at trigger for a while
 - Take this opportunity to time-align it for good
 - Need TAE
 - Provide a ~2% calibration based on early data
 - Much much easier if we can use tracks
 - If needed can be improved in dedicated runs at higher luminosity
- Not so long time left for designing and prototyping all procedures...