

Calo Calibration meeting 08 september 2009

Calibration Farm automatic analysis

- Reminder:
 - LED data histogramed in Calibration Farm
 - Pedestal and LED-signal mean and RMS per channel (+ possibly the detailed distributions)
 - DataSet stored every 10-15 mn containing O(6k) LED flashes per channels
 - Automatic analysis based on OMAlib
 - Configure 'CaloMonitor' object
 - mean pedestal follower, noise level, gain variation, ...
 - provides warning and alarms
 - provides summary histograms (alarm levels, location of problematic channels, ...)
 - see talk in 29 april 2009 meeting for details
 - Automatic analysis can be easily configured for other purpose. E.g. :
 - validate dead channels on physics data in Monitoring Farm (useful for Prs/Spd)
 - Identify channel with timing asymmetry and kernel out of expected range
- Automatic procedure succesfully commissionned during summer with Sergey :
 - During LED run taken by Irina on 07/30
 - Orwell histogram redirected on Monitoring Farm during the test
 - After fixing several configuration problems the automatic analysis nicely provided Ecal status for pedestal and LED every time a new DataSet was saved (every 10mn)
 - Configuration options ready to set the actual Calibration Farm in operation

Calibration Farm: next to do

- Tune histo production (pedestal/led range, ...) and fill condDB with initial values
- (OD)

- · would be useful to have 'reference' LED data with nominal conditions
- including empty LED flashing in the calibration sequence (for Xtalk free analysis of pedestal)
- Need help from Irina/Anatoly to setup the nominal LED sequence for XCal
- Stephane kindly provides such file for Prs (but not perfect many channels saturating)
- Refine 'CaloMonitor's for EHcal and Prs

(Sergey)

• Define default presenter page with analysis summary histo

(OD)

Develop code to analyze consecutive data set

(volunteer)

- time evolution for many variables
- · useful to define stability range for each parameter
- Develop script to fastly retrieve information from log and summary

(volunteer)

- · tools for piquets to digest summary info and help to decision taking
- retrieve problematic channels follow problems evolution ...
- Link to Condition DataBase

(volunteer)

- produced new condition table ready for condDB update from caloMonitor (OD)
- · déjà vu condDB update procedure
- to be transmitted via DIM to a PVSS DataPoint.
- need PVSS expert to built a panel to manage these information.
- Documentation/tutorial

(all)

Miscalibration exercise

Miscalibrated data production

- Full production of miscalibrated data
 - software in place + options configuration ready
 - · See Albert' talk
- Reprocessing existing data
 - Fast procedure but reprocessing already digitized data gives approximate miscalibration
 - no miscalibration for the 1bit Spd
 - O-suppression/saturation effect for Prs/Xcal
 - Available sample :
 - 10M Fest09 minibias events (run 4834 654k L0-filtered)
 - 170k B→K*γ events (run 8426 85k L0-filtered)
 - 10% RMS miscalibration in Ecal, Hcal and Prs + 11 dead channels in each.
 - files on Castor at /castor/cern.ch/user/o/odescham/data/2009/Fest09-CaloMisCalib-v0
 - Aurélien ran the Eflow method on the 10M 'miscalibrated' minibias
 - Blind test: compare re-calibration coefficients (Aurélien) to initial miscalibration (OD)
 - Results on next slides
 - See Aurélien talk for details about the procedure

Calibration blind test: Ecal

Distribution of miscalibation coefficients (10% RMS gaussian)

Re-calibration coefficients with Eflow method from Aurelien

Calibration blind test: Ecal

Region	Bias	Sigma	™2/Ndof
Inner	+2.2%	5.0%	28/97
Middle	+2.3%	4.8%	31/97
Outer	+1.7%	3.9%	49/97
All	+2.0%	4.5%	45/97

InnerEcal Coeff / DBCoeff

Calibration blind test: Hcal

Distribution of miscalibation coefficients (10% RMS gaussian)

Re-calibration coefficients with Eflow method from Aurelien

Calibration blind test: Hcal

Region	Bias	Sigma	X ² /Ndof
Inner	+0.9%	6.2%	555/97
Outer	+0.5%	3.9%	32/97
All	+0.8%	5.4%	230/97

Calibration blind test: Prs

Distribution of miscalibation coefficients (10% RMS gaussian)

Re-calibration coefficients with Eflow method from Aurelien

Calibration blind test: Prs

Region	Bias	Sigma	™²/Ndof
Inner	+0.7%	7.8%	104/97
Middle	+0.9%	7.2%	138/97
Outer	+0.7%	6.7%	166/97
All	+0.8%	7.1%	300/97

Miscalibration exercise: what next

- Eflow method provides $\square O(5\%)$ calibration as expected (incl. some bias)
- Huge sample of 'correctly) miscalibrated data is about to be produced
 - To be used to setup/exercise 'fine calibration' procedure (pi0, e/p)
 - Applying same miscalibration coefficients in Boole as used for MDF reprocessing and used by Eflow tests
 - No re-calibration applied in Brunel
- Will add Aurélien calibration coefficients in condition DataBase
 - can be used to start 'fine calibration' from Eflow-pre-calibrated data
 - just need to re-run Brunel step with the wanted re-calibration condDB tag
 - · default tag: no re-calibration → start from 10% gaussian miscalibration
 - recalib tag : Eflow calibration applied \rightarrow start from O(5%) miscalibration
- software for Eflow histo. production+ automatic analysis available in Orwell v1r8
 - Could run in the monitoring farm or Data Quality stream
 - Sergey' proposal for 'sliding analysis': continuously run over the N previous datasets to have enough statistics (e.g. over the last 24h -> 4M evts if 50Hz data in MF)
 - Scripts and code configuration to be setup

Other issues

- Orwell v1r8 available in LHCbRelease
 - development version Orwell v1r9 about to be activated at pit
- Implementing python configurable in Calo reco software (thanks to Vanya)
 - in CaloReco, CaloPIDs, CaloMoniDst and CaloAssociators packages
 - Easier to configure multi-purpose reco sequences (offline, Hlt, Hlt-topo, ...)
 - Manage the configuration of the dataOnDemand for all calo object (used in DaVinci)
 - being validated should be used for next Brunel version
 - Brief introduction of calo configurable concept during next software week
 - Vanya is developping calibration tools based on this configurables (see Victor talk)
- Integrate software to perform Photon/Electron correction (E/S/L-corrections)
 - Provide correction parameters (to be included in condition DataBase)
 - Using MC truth or tracked electron
 - include some monitoring (S-shaping, ...)
 - More news in next meeting
- New tools in preparation to manage MC association calo reconstructed object
 - generic DaVinci association tools have some problems with calo particles
 - specific use-case-dependent patches exist here and there
 - · the new generic tool should help

Conclusion

- Automatic analysis of Calibration Farm histograms commissioned
 - ready to have a first version in operation at pit

```
Still a lot to do /
to complete the procedur'. /
Volunteers needed. /
```

- Absolute calibration from physics data
 - Blind test of the Eflow method -> O(5%) calibration
 - large miscalibrated sample about to be produced to check fine calibration methods

LOCalo2CaloTool (1/2)

(D. Golubkov)

ILOCalo2Calo: a simple tool to get a list of CaloClusters (owned by TES) in the vicinity of the input LOCaloCandidate(s) or CaloCellID(s).

Basically, just invokes decoding of the corresponding Tell1s and clusterization with help of *CaloDataProvider* and *CaloClusterizationTool* (recently adapted for that purpose by Olivier and Victor).

Level ("neighbour level"): the size of the clusterized region in Calo cells.

For an LOCaloCandidate (2x2 region) Level = 0 => 2x2 cells, Level = 1 => 3x3 cells, etc.

A good value for the Level parameter might be ~2 (see next slide).

(plots done on 100 minbias DIGI events)

LOCalo2CaloTool (2/2)

Selection: E>100 MeV, Et>100MeV (suppress "zeroes"), XY distance between the *CaloCluster* and center of the *LOCaloCandidate* dR<10cm.

=> The full efficiency for finding the cluster seems to be achieved at Level=~2