

Update on ATLAS insertable B-layer

LHCC Upgrade session CERN, September, 22nd 2009

<u>G. Darbo</u> - INFN / Genova

Indico agenda page:

• <u>http://indico.cern.ch/conferenceDisplay.py?confld=67640</u>

IBL Project Status

- Project approved by ATLAS
 - Project Leader endorsed by ATLAS CB (February 20th)
 - IBL has put in place its management structure (Management Board) Endorsed by ATLAS EB (April 3rd)
- ATLAS Institutes Participation
 - IBL Kick-off (July 8th) meeting with Institute's Leaders to focus participation in the project.
 - Large interest in the project (~35÷40 institutes participated at the kick-off meeting and have shown interest in parts of the project)
 - Project cost evaluated and funding model proposed: 4.0 MCH (M&O-A), 5.6 MCH (M&O-B, new project)
- Sectorial Design Report (TDR)
 - Main editor / technical editor (K. Einsweiler / M. Capeans) and chapter editors in charge
 - Few editor's meetings since end of July, TDR foreseen for April 2010.
- Memorandum of Understanding foreseen in "interim" form by the end of the year:
 - MoU will be signed after TDR (spring 2010)

IBL Organisation Structure

Whole project divided into 4 working groups

- IBL Management Board has 10 members, plus "extra" and ex-officio members.
- Frequent meetings (every ~14 days) in this phase of the project.

IBL Management Board Membership:

- •IBL PL + IBL TC
- •2 coordinators from each WG
- •Plus "extra" members

Membership

IBL Project Leader: G. Darbo IBL Technical Coordinator: H. Pernegger "Module" WG (2 Physicists): F. Hügging & M. Garcia-Sciveres "Stave" WG (1 Phy. + 1 M.E.): O. Rohne + D. Giugni "IBL Assembly & Installation" WG (2 M.E. initially, a Phy. Later): N. Hartman + R. Vuillermet "Off-detector" WG (1 Phy. + 1 E.E.): T. Flick + S. Débieux <u>"Extra" members</u>: Ex officio: Upgrade Coordinator (N. Hessey), PO Chair

Ex officio: Upgrade Coordinator (N. Hessey), PO Chair (M. Nessi), Pixel PL (B. Di Girolamo), ID PL (P. Wells), Pixel Chair (C. Gößling)

Offline "liaison" Pixel Off-line coordinator: A. Andreazza TDR editor (temporary): K. Einsweiler

Module WG (2 coordinators)

•FE-I4

- Sensors
- Bump-Bonding
- Modules
- •Test & QC
- Irradiation

Stave WG (1 Phys + 1 Eng.)

•Staves •Cooling Design & Stave Thermal Management •HDI •Internal Services •Loaded Stave •Test & QC IBL Integr.-Install. (2 Eng.) •Stave Integration

- •Global Sup. •Beam Pipe (BP)
- •Ext.services inst.
- •IBL+BP Installation •Cooling Plant
- •Cooling Plant •Test & QC

- Off-detector (1 Phys + 1 E.Eng.)
- •Power
- •DCS
- ·ROD
- •Opto-link
- •Ext.serv.design/proc.
- Test Beam
- •System Test

TDR - Schedule

Action		Deadline	# Weeks from previous
TDR	Printout, submission to LHCC	April 1 st 2010	2
Final Draft	Deadline for comments	March 15 th 2010	2
	Sent to Collaboration for Approval	March 1 st 2010	2
Draft 2	Deadline for comments	Feb 15 th 2010	3
	Sent to Collaboration	Jan 25 th 2010	2
Draft 1	Deadline for comments	Jan 11 th 2010	4
	Sent to Collaboration	Dec 15 th 2009	2
	Approval by TDR Editors and PO/USG	Dec 1 st 2009	2
Preparation	TDR Integration	Nov 16 th 2009	3
	Editors meeting 4 - final internal draft	October 19 th 2009	3
	Editors meeting 3	September 28 th 2009	3
	Editors meeting 2	September 7 th 2009	3
	Editors meeting - final chapter's structure	August 19 th 2009	3
	Editors Kick off meeting	July 22 nd 2009	

IBL Layout and New Beam Pipe

Several layouts under study: 14 staves at R_{min} =~3.1 cm

• Single and double staves – One or two (redundant) cooling channels

Requirements for Sensors/Electronics

Requirements for IBL

- IBL design Peak Luminosity = $3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow \text{New FE-I4}$, higher hit rate
- Integrated Luminosity seen by IBL = 550 fb⁻¹
- Total NIEL dose = 2.4 x $10^{15} \pm 30\% (\sigma_{pp}) \pm 50\%$ (damage factor) = 4.7 x $10^{15} n_{eq}/cm^2 \rightarrow more rad-hard sensors$
- Total radiation dose > 200 Mrad

Ref. Ian Dawson – ATLAS Upgrade Week (Feb.09)

• Fit made for 2 < r < 20 cm for L=1000fb⁻¹

$$\Phi(r) = \left(\frac{493}{r^2} + \frac{25}{r}\right) \times 10^{14}$$

- Gives for IBL @ 3.7 cm (550 fb⁻¹): $\sqrt{_{1Mev}=2.4x10^{15}(1.2 MGy)}$
- Safety factors not included in the computation (pp event generator: 30%, damage factor for 1 MeV fluences: 50%)

Module Layout - Convergence

- Sensor technology (3D, Planar, Diamond) taken after TDR
 - module prototypes with FE-I4 (second half 2010) –
 - Common Engineering specifications (layout, Max Vbias, Ibias, power) under definition to progress on cooling/stave/service design;
- Common sensor baseline for engineering and system purposes
 - 3D/Diamond single chip modules / Planar sensors 2 chip modules
- Sensor/module prototypes for ~10% of the detector in 2010
 - · Stave prototype tested with modules and cooling

Sensor: 3D, Planar, Diamond

- IBL sensor developments coming from ATLAS R&D efforts IBL define specification and requirements for the sensors:
 - ATLAS 3D Sensor Collaboration (16 Institutes and 4 processing facilities):

Bergen, Bonn, CERN, Cosenza, Freiburg, Genova, Glasgow, Hawaii, LBNL, Manchester, New Mexico, Oslo, Prague, SLAC, Stony Brook, Udine - Processing Facilities: CNM Barcelona, FBK-IRST (Trento), SINTEF/Stanford

• ATLAS Planar Pixel Sensor R&D Collaboration (16 Institutes)

Bonn, Berlin, DESY, Dortmund, MPP & HLL Munich, Udine, KEK, CNM Barcelona, Liverpool, LBNL, LPNHE, New Mexico, Orsay, Prague, Santa Cruz.

• ATLAS Diamond R&D Collaboration (6 Institutes, 2 vendors):

Bonn, Carleton, CERN, Ljubljana, Ohio State, Toronto

Bring the 3 sensor technologies to the prototype phase for IBL

Planar Sensors – Slim Edge

- Planar sensor prototyping for IBL
 - Large numbers of new results with strips and diodes (RD50) promise enough CCE for IBL
- Parameter optimization under study
 - Detector bias
 - Present pixel V_{bias}=600V, looking at implication of higher V_{bias} (1000÷1500V)
 - Optimize guard ring (geometrical inefficiency in Z) for slim edge
 - 300÷500 µm look feasible
 - Reduce thickness: more charge collected for given V_{bias}, lower bulk current
 - 250 is the standard, 200÷220 μm look feasible, 140μm would be attractive

3D Sensors - Test Beam

- Jun.09 test beam: 1 ATLAS Pixel planar, 1 3D SINTEF/Stanford (full column), 2 FBK partial double columns (FBK 3EM5 has low breakdown @ 10V)
- For inclined tracks 3D sensors have similar efficiency and spatial resolution as planar – No Lorentz angle effect in 3D sensor
- Active edge (STA) show efficiency up to 5÷10µm from edge

 $\phi = 0^{\circ}$

99.9

96.7

99.0

90.2

 $\frac{\text{Hit efficiency (\%)}}{B = 0.0 \text{ T}}$

 $\phi = 15^{\circ}$

99.9

99.8

99.8

97.7

Ref.: O. Rohne – Vertex 2009

13.5

14.8

Planar

STA 3E

FBK 3E7

FBK 3EM5

14.0

15.4

10.4

11.9

9.7

11.3

Diamond

- Diamond advantages:
 - Small capacitance → low noise (140e vs 180e of planar); possible lower threshold operation (1500e)
 - Operation with no cooling: no leakage current
- Two modules built, more prototypes in 2010

- FE-I3 not suitable for IBL
 - ~7% inefficiency at 3.7 cm and $\mathcal{L} = 3x10^{34}$ cm⁻²s⁻¹
 - FE-I3 works at 50 Mrad, but has major faults at 100 Mrad
- FEI4 design collaboration formed in 2007 between:
 - Bonn, CPPM, Genova, LBNL, NIKHEF
- ♀ FE-I4_proto chip (3/08)
 - Main analog blocks (3x4mm²)
 - Irradiated to 200 Mrad: noise increase by 20% (ENC 100→ 120 with 400fF load and I_{AVDD}=10µA/pixel)

	FE-I3	FE-I4	
Pixel Size [µm²]	50×400	50>	<250
Pixel Array	18×160	80>	<336
Chip Size [mm ²]	7.6×10.8	20.2×	:19.0
Active Fraction	74%		89%
Analog Current [µA/pix]	26		10
Digital Current [µA/pix]	17		10
Analog Voltage [V]	1.6		1.5
Digital Voltage [V]	2		1.2
pseudo-LVDS out [Mb/s]	40		160

FE-I4: Review, Submission, Prototyping

FE-I4 submission review

- Review on "GDS II" ready
- Nov 3-4 (K. Einsweiler to chair)
- Submission, if review is passed, planned before the end of the year
- Sensineering run
 - Up to 12 wafers from one engineering run (under investigation possibility of additional ones)
 - ~50 FE-I4 fit in a 8" wafer yield "for good enough for module prototype" chip estimated 40÷70%
- Planned prototypes with sensors by spring 2010
 - Limited number of sensor options (max 3) for each of the three technologies
 - ~10% of IBL in prototyping size
 - 200÷300 FE-I4 dedicated for module prototype

Review team:

Francis Anghinolfi, CERN - Stéphane Debieux, Geneva (IBL Electronic Project Engineer) - Kevin Einsweiler, LBNL (Review Chair) - Philippe Farthouat, CERN (Project Office) - Alex Grillo, UCSC - Kostas Kloukinas, CERN - Xavier Llopart, CERN - Mitch Newcomer, Penn - Ivan Peric, Heidelberg - Ned Spencer, UCSC - Mike Tyndel, RAL (Project Office) - Rick Van Berg, Penn

¹Bonn

Michael Karagounis, Tomasz Hemperek, Andre Kruth

²**CPPM** Mohsine Menouni, Denis Fougeron

³INFN Genova Roberto Beccherle

Bubble Abder Makkaoui (lead designer), Dario Gnani, Julien Fleury (visitor)

⁵NIKHEF

Ruud Kluit, Jan-David Schipper, Vladimir Gromov, Vladimir Zivcovic

Physicist/Students (specification, testing, etc) D. Arutinov¹, M. Barbero¹, G. Darbo³, S. Dube⁴, D. Elledge⁴, M. Garcia-Sciveres⁴, A. Rozanov²

Stave & Thermal Management

- Stave design goals:
 - Reduction of material budget from Pixel (2.7 $\% \rightarrow$ 1.5 % of $X_0):$ Carbon Foam
 - Carbon Fiber (CF) pipe (no corrosion, CTE match) and Titanium (Ti) pipe prototypes:
 - 2mm OD (for CO_2 cooling), 3mm OD (for C_3F_8 or CO_2) and 4mm OD.
 - Thermal figure of merit (ΔT between module and pipe internal wall) of staves and pipes under measurements
 - High pressure test (150 bar for CO₂) passed by CF and Ti pipes
 - Fittings and pipe splicing under development

Cooling:

- Prototyping CO₂ and C₃F₈ cooling system in cooperation with ATLAS CERN cooling groups and NIKHEF
- IBL mock-up to confirm thermal simulation of beam-pipe bakeout

Stave Material Budget

"Invariant Contributions"	X0 [%]	
Silicon sensor (250um)	0.27	
FE chip	0.33	
Flex circuit	0.2	
Stave foam (4mm with X0=426cm)	0.09	
Carbon facings (2x200um)	0.13	
Total invariant	1.02	
"Cooling contribution"		
CO2 pipe 1.5mm ID		
C3F8 pipe 3.0mm ID	C02	C3F8
Coolant fluid (liquide 80/60%)	0.03	0.13
Cooling pipe CF (300um)	0.04	0.07
Cooling pipe Ti (120um)	0.12	0.22

Credits: D. Giugni, P. Schwemling, H. Pernegger

Installation Scenarios

- Two global support / installation scenarios: IBL support tube (1) / no tube (2):
 - An IBL support tube would have advantage on stiffness and simplicity/safety for IBL installation, but drawback are envelope needs (~1÷1.5 mm) and increase of radiation length
- Procedure studied on mock-up at bld.180 procedure (1) animation:
 - The beam pipe flange on A-side is to close to the B-layer envelope Need to be cut on the aluminum section
 - A structural pipe is inserted inside the Beam Pipe and supported at both sides.
 - The support collar at PP0 A-side is disassembled and extracted with wires at PP1.
 - Beam pipe is extracted from the C-side and it pulls the wire at PP1
 - New cable supports are inserted inside PST at PP0.
 - A support carbon tube is pushed inside the PST along the structural pipe.

Update on ATLAS IBL

Schedule

- We plan to be ready for installing by end 2014:
 - Cannot be ready much before without sacrificing performance:
 - need new technology development (on going) and prototyping (next year) for FE-I4 (more radiation hard, R/O efficiency), Sensors (more radiation hard), Staves (lighter).
 - IBL, in addition to take over the B-layer when accumulated dose will reduce its efficiency, will improve the present tracking performance (lighter and at small radius than present B-Layer) and will be an insurance for hard failures (cooling, opto-links, interconnections, etc.) of present B-layer.
- General State State
 - Need to synchronize a long shutdown (8 months) for IBL installation this could be in the "shadow" of machine element installation
- *General Section Section & Section 2018 Section*
 - The technologies needed for the IBL are either usable for Pixel outer layers or are a first step toward more radiation hard and higher R/O bandwidth components for the inner Pixels.

Implications of IBL

• Smaller beam-pipe and larger aperture new triplets (sLHC phase I) require to revisit the TAS and the forward shielding

- Solution Sector Appendix and Sector Carteria Contract Con
 - Effects on muon background;
 - Protection of a smaller radius IBL.
- Also, we have other beam-pipe issues, like going to much longer beryllium sections.
 - This is not strictly sLHC phase I, but has same timescale.

Conclusions

- IBL organization structure well in place
- TDR and MoU in progress project cost evaluated
 - Motivated groups and Institutes support
- *Challenging project:*
 - Tight envelopes, material budget reduction, radiation dose and R/O bandwidth requirements
- Solution New technologies in advanced prototype phase:
 - Sensors, FE-I4, light supports, cooling
- *Ready for installing in 2014 together with a smaller beam pipe*
 - It is not just a "replacement of existing B-layer", but it improves performance for b-tagging and it is an assurance for hard failures of present B-layer