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• intro to chameleons
• scalars
• vectors

• Can the parameter space for a vector be expanded 
via chameleons?
• applications to “light dark matter”, hidden sector 

models of dark matter with light bosons 



Environmental dependence of particle 
properties is not unusual

➡ index of refraction
➡KS regeneration

➡Neutrino MSW effect
➡Quasi particles in condensed matter
➡ effective mass of photon, (superconductivity)
➡All Standard Model fermion mass terms depend 

on value of Higgs scalar which varies (e.g. is 
zero in very early universe)

➡ diaelectric, diamagnetic, paramagnetic screening 
or anti screening
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We must not assume that 
properties of exotic particles

 are independent of their 
environment 



Spinless Chameleon model
Barrow, Mota, Khoury, Weltman, Gubser, Brax, van de Bruck, Davies,    

...Feldman, A.E.N

Chameleon bosons are challenging to detect 
because their effective mass and couplings 
depend  on the local environment    

Motivation: hiding very light scalars or pseudoscalars 
from long range force experiments



Simple example of a spinless Chameleon

➡   L=(∂φ)2 /2-(m2/2)φ2-(μ/3)φ3-(ε/4)φ4 +gφρ

➡  assume potential minimized at φ=0 in vacuum

➡  (μ/3)φ3 term never large relative to other terms

➡ for simplicity neglect μ

➡ static equation of motion: ∇2φ=-gρ+(m2+εφ2 )φ

source 
for φ

“effective φ mass”

Potential
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“Chameleon term”



effective mass of scalar chameleon
➡ chameleon screens itself, does not mediate strong new 

long range force  
➡ for negligible m, φ falls exponentially until             
φ ∼ 1/(ε1/2r)

➡ effective coupling is small, suppressed compared to 
gravity by factor   ~ mpl/(Mε1/2)  *                                                     
(ε is the coefficient of φ4, M the source mass)

➡ coupling depends on mass M, not composition of source
➡ equivalence principle violation experiments designed with 

equal mass objects with large source masses          
can not find chameleon scalar forces

* provided ε>(mpl/βM)2, where β is strength relative to 
gravity, else nonlinearity ignorable 7



Vector Chameleons

A.E.N. and J. Walsh, 2007



New vector particles?
➡massless vector must couple to conserved current
➡ candidates in SM are Qem, B, L
➡ can also couple to dark charges
➡ ultralight vector couplings to axial currents very 

constrained
➡ red giant cooling constrains couplings of particles 

lighter than 30 keV 
➡ supernova cooling constrains couplings of particles 

lighter than 10 MeV
➡ searches for long range forces constrain  couplings of 

particles lighter than eV
➡  fixed target, rare decays, g-2, e+e- factories constrain 

lighter than few GeV 
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    Chameleonic U(1) Gauge Force

General effective field theory considerations
➡Order one effects typically require  new particles 

which are lighter than scale of affected physics 
➡For ordinary solids, this implies sub keV mass 

scalar  
➡For red giants, this means sub 30 keV mass scalar
➡For supernova, sub 50 MeV mass scalar   
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“But aren’t light scalars unnatural?”
➡Not necessarily.                             

(very low energy susy in gauge mediation, 
little Higgs, RS models, composite 
models, ..... )
➡Implies additional light particles 

➡So What?                                                                            
(Naturalness of scalar masses is not yet an 
experimentally established principle. What 
if theorists are wrong about no finetuning 
of unobservable quantities?) 11



Vector Chameleon

➡charge q scalar field s=|s|eiθ

➡gauge field Bμ
➡ either sign m2 (“scalar QED” or “Abelian 

Higgs model”)
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When m2 is negative the paraphoton acquires a vacuum
mass

mV =
√

2qg|s| . (5)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of range λV ≡ m−1

V , and strength α (between 2 neutrons)
relative to gravity

α ≡ g2

4πGNm2
N

. (6)

However in matter, the value of the s condensate can
be substantially larger than it is in vacuum, reducing
the range of the vector force, and changing its apparent
strength. Note that any massive vector particle receiving
mass from the Higgs mechanism has a chameleon nature.
However the chameleon effect is only significant when there
exists a scalar whose potential is flat enough (small enough
mass and self coupling) so that the scalar expectation value
changes significantly.

A. Thin Shell Approximation to Chameleon Vector
Force

We now turn to more detailed consideration of the cou-
pled s and paraphoton dynamics, assuming an s conden-
sate inside macroscopic chunks of ordinary matter.

We begin by reviewing scalar chameleonic fields [Refs].
For a real field ψ coupled to a static source j, with po-

tential V (ψ), a static configuration which minimizes the
total energy solves the equation of motion

−∇2ψ +
∂V

∂ψ
= j . (7)

For a constant source, a solution ψ0 for ψ can be found
such that

∂V

∂ψ

∣∣
ψ=ψ0

= j . (8)

The effective mass for ψ excitations in a constant back-
ground field ψ is

meff ≡ 1
λψ

=

√
∂2V

∂ψ2
. (9)

The screening length λpsi0 is the effective length scale of
the force mediated by the ψ field inside a large constant
density object.

For an object of finite size which is much larger than
λ(ψ0), physical arguments and numerical studies [? ] show
that ψ → ψ0 in the bulk of the object. Outside the surface
of the object, ψ falls rapidly on a scale of order λψ0 . Thus
between large objects, λψ0 is the effective range over which
the force is strong, and effectively only a ”thin shell” of
thickness λ0 acts as a source for the field. This range
is always shorter than the range in vacuum. When λψ0

is much shorter than the vacuum range, then, on scales
between λψ0 and the vacuum range, there is a much weaker
residual force, whose strength αeffcompared to gravity is
of order[? ]

αeff ∼
1

εM1M2GN
, (10)

where ε is the self-coupling [? ].
The case of a vector chameleon is similar, except that

there are two fields s and B, with matter acting as a source
for the B field, and the B field in turn acting as negative
term in the potential for s. To estimate the range of an
exotic force between macroscopic objects, it is useful to
first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine an screening length for the s and B fields. As for
a scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approx-
imation is to take the fields inside the object to equal to
their values the would have inside an infinite sized object.
Outside a sufficiently large object the fields drop exponen-
tially fast beyond their screening lengths.

The Lagrangian for our model is

L = (∂µ + iqgBµ)s∗(∂µ − iqgBµ)s−m2|s|2 − ε

2
|s|4

−1
4
BµνBµν − gBµjµ

To determine the screening lengths for large objects, we
first consider a time independent background charge B−L
charge density j0 = ρ. The s field carries a charge density
ρs

ρs = −iq(D0ss
∗ − s∗D0s) . (11)

For a minimal energy configuration of given charge, we
take s to have the form |s((x)|e−iqwt. Then it is convenient
to define a gauge invariant[3]. field

ω ≡ w + gB0 . (12)

For a spatially uniform configuration, ω is the energy per
unit charge contained in the s condensate, which, for ε = 0,
is simply the s particle mass divided by its charge. In
general nonzero ε raises qω to a value greater than m.
Note that in general ω depends on the background charge
density ρ.

To minimize the total energy for a static configuration
where ω and |s| are position dependent, one must solve the
coupled, nonlinear equations of motion

∇2|s| =
(
m2 + ε|s|2 − q2ω2

)
|s|

∇2ω = −g2ρ + 2q2g2ω|s|2 . (13)

Note that
√

2|q|g|s| acts as the effective mass for ω.
Note also that there is no source for s. The combination√

m2 + ε|s|2 − q2(ω2) acts as an effective mass for s. For
negative m2, there will be an s condensate in vacuum. For
positive m2, the presence of an s condensate in matter is
due to the fact that the ω field provides a negative effective
mass squared term for s.

We now consider a spatially uniform background charge
density ρ, and find the the values of ω and |s| which will



Coupled equations of motion for U(1) 
gauge field and Charged Scalar
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➡charge q scalar field s=|s|eiθ 

➡configuration θ=qwt, Bi=0, i=1,2,3

➡gauge invariant fields |s|, ω= w+gB0

➡gauge invariant equations of motion for 
static configuration

3

When m2 is negative the paraphoton acquires a vacuum
mass

mV =
√

2qg|s| . (5)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of range λV ≡ m−1

V , and strength α (between 2 neutrons)
relative to gravity

α ≡ g2

4πGNm2
N

. (6)

For a vector gauge boson, the mass However in matter,
the value of the s condensate can be substantially larger
than it is in vacuum, reducing the range of the force, and
changing its apparent strength. Note that any massive
vector particle receiving mass from the Higgs mechanism
has a chameleon nature. However the chameleon effect is
only significant when there exists a scalar whose potential
is flat enough (small enough mass and self coupling) so
that the scalar expectation value changes significantly.

A. Thin Shell Approximation to Chameleon Vector
Force

We now turn to more detailed consideration of the cou-
pled s and paraphoton dynamics, assuming an s conden-
sate inside macroscopic chunks of ordinary matter.

We begin by reviewing scalar chameleonic fields [Refs].
For a real field ψ coupled to a static source j, with po-

tential V (ψ), a static configuration which minimizes the
total energy solves the equation of motion

−∇2ψ +
∂V

∂ψ
= j . (7)

For a constant source, a solution ψ0 for ψ can be found
such that

∂V

∂ψ

∣∣
ψ=ψ0

= j . (8)

The effective mass for ψ excitations in a constant back-
ground field ψ is

meff ≡ 1
λψ

=

√
∂2V

∂ψ2
. (9)

The screening length λpsi0 is the effective length scale of
the force mediated by the ψ field inside a large constant
density object.

For an object of finite size which is much larger than
λ(ψ0), physical arguments and numerical studies [? ] show
that ψ → ψ0 in the bulk of the object. Outside the surface
of the object, ψ falls rapidly on a scale of order λψ0 . Thus
between large objects, λψ0 is the effective range over which
the force is strong, and effectively only a ”thin shell” of
thickness λ0 acts as a source for the field. This range
is always shorter than the range in vacuum. When λψ0

is much shorter than the vacuum range, then, on scales
between λψ0 and the vacuum range, there is a much weaker
residual force, whose strength αeffcompared to gravity is
of order[? ]

αeff ∼
1

εM1M2GN
, (10)

where ε is the self-coupling [? ].
The case of a vector chameleon is similar, except that

there are two fields s and B, with matter acting as a source
for the B field, and the B field in turn acting as negative
term in the potential for s. To estimate the range of an
exotic force between macroscopic objects, it is useful to
first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine an screening length for the s and B fields. As for
a scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approx-
imation is to take the fields inside the object to equal to
their values the would have inside an infinite sized object.
Outside a sufficiently large object the fields drop exponen-
tially fast beyond their screening lengths.

To determine the screening lengths for large objects, we
first consider a time independent background charge B−L
charge density ρ. The s field carries a charge density ρs

ρs = −iq(D0ss
∗ − s∗D0s) . (11)

For a minimal energy configuration of given charge, we
take s to have the form |s((x)|e−iqwt. Then it is convenient
to define a gauge invariant[3]. field

ω ≡ w + gB0 . (12)

For a spatially uniform configuration, ω is the energy per
unit charge contained in the s condensate, which, for ε = 0,
is simply the s particle mass divided by its charge. In
general nonzero ε raises qω to a value greater than m.
Note that in general ω depends on the background charge
density ρ.

To minimize the total energy for a static configuration
where ω and |s| are position dependent, one must solve the
coupled, nonlinear equations of motion

∇2|s| =
(
m2 + ε|s|2 − q2ω2

)
|s|

∇2ω = −g2ρ + 2q2g2ω|s|2 . (13)

Note that
√

2|q|g|s| acts as the effective mass for ω.
Note also that there is no source for s. The combination√

m2 + ε|s|2 − q2(ω2) acts as an effective mass for s. For
negative m2, there will be an s condensate in vacuum. For
positive m2, the presence of an s condensate in matter is
due to the fact that the ω field provides a negative effective
mass squared term for s.

We now consider a spatially uniform background charge
density ρ, and find the the values of ω and |s| which will
minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

gauge field acts as 
negative m2

scalar screens 
gauge field



Three different parameter regimes

1.|m|>(ερ)1/3 ,m2<0: Chameleon effect minimal 
“Usual Abelian Higgs model”

2. |m|>(ερ)1/3 ,m2>0: ε negligible. Condensate in 
sufficiently large objects, with |ω|<|m/q|

3. |m|<(ερ)1/3:  High density Chameleon Regime   
- In constant density matter                                  

have approximate sol ω=ω0

14
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minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

The total energy density subject to this constraint is min-
imized when

ω2
0 =

(m2 + ε|s0|2)
q2

. (15)

The equations Eq. (15) and Eq. (16) allow us to solve for
both ω0 and |s0| inside large constant density objects, for
either sign of m2. For m2 > 0, the solution is

ω0 =
m22 4

3 + 3
(
−

√
(ερ/q)2 − 16m6

27 + ερ/q

) 2
3

3q2 2
3

(
−

√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

, (16)

while for m2 < 0, the solution is

ω0 =
−m22 4

3 − 3
(√

(ερ/q)2 − 16m6

27 − ερ/q

) 2
3

3q2 2
3

(√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

. (17)

For both cases

|s0| =
√

ρ

2qω0
. (18)

For positive m2, in the limit

|m| " (ερ)
1
3 , (19)

the equations Eq. (17) and Eq. (19) become

ω0 ≈ m/q

|s| ≈
√

ρ

2qm
, (20)

while for negative m2, in this limit we have

ω0 ≈ ερ

2qm2

|s0| ≈ m√
ε

. (21)

Note that in the latter case the expectation value of the
scalar field is approximately the same inside a macroscopic
object and in vacuum, and the chameleon effect is negligi-
ble.

For either sign of m2, in the limit

|m| % (ερ)
1
3 (22)

an approximate solution is

ω0 ≈ (ερ) 1
3

q

|s| ≈
(ρ

ε

) 1
3

. (23)

The effective screening length of the paraphoton inside
a macroscopic object is given by

$V ≡ (
√

2qg|s|)−1 =
√

ω0

2qg2ρ
. (24)

Comparison of equations Eq. (15), Eq. (25) and Eq. (??)
shows that when m2 > 0, the condition for an s condensate
inside matter to be energetically favorable is, up to factors
of order 1, equivalent to the condition

$V <
∼R , (25)

i.e., the object should be larger than the vector screening
length.

When m2 < 0, the chameleon effect is significant when
the value of ε satisfies Eq. (23). The constraint in turn
bounds the mass of the physical scalar excitations of the
condensate. If $(0)V

−1 is the mass of the paraphoton in vac-
uum, and mH is the vacuum mass of the scalar associated
with the Higgs mechanism, then the condition Eq. (23) for
a significant chameleon effect may be written

mH % g2ρ$(0)V

2
∼ ρ/〈s〉20 . (26)

We now turn to the conditions for equations Eq. (15)
and Eq. (16) to yield the correct values of the vector and
scalar fields deep inside the object. We assume $V % R,
and note that for constant s, the equation for ω is just a
Yukawa equation. Hence as long as s is constant inside
the object, assuming that ω = ω0 deep inside the object
and falls to zero on a length scale $V outside the object is
consistent with equation Eq. (14). Note that outside the
object, when ω ≈ ω0, the s field does not decay. Hence s
decays to its vacuum value at a longer length scale than ω
field does. Beyond a distance 1/ω0 from the object, since
ω ≈ 0, s decays with an effective length scale $S

$S ≡
1

meff
=

1√
m2 + εs2

0

=
1

qω0
. (27)

When both $V and $S are much smaller than the size R of
the object, the total energy density for the field configura-
tion is dominated by the volume inside the object, and so
we expect the solution deep inside the objects to approach
equations Eq. (15) and Eq. (16). We will refer to the case
of $S,V % R as the thin shell case. Comparison of eqs
Eq. (25) shows that for a given R there is a lower limit on
g for any value of m, ε for a thin shell

g >∼

√
1

ρR3
(28)

that is, the charge of the object has to be larger than 1/g2.
For centimeter sized objects of typical solid density, a thin
shell is possible only for g >∼ 10−12.

Another case where equations (15) and (16) yield the
correct values is when the chameleon effect is negligible,
with $V ≈ $(0)V . The experimental constraints on this case
have already been analyzed extensively [? ].

A final case is where $(0)V % R, but $(0)S is larger than
R. In this case screening of charged objects is energetically
favorable, but the s and ω fields will not approach constant
values. We will refer this this case as a the non thin shell
chameleon, and discuss it in the next section.



When is  chameleon effect significant 
for Abelian Higgs model?

➡   |m|>(ερ)1/3 ,m2<0: Chameleon effect minimal

➡   |m|<(ερ)1/3:  High Density Chameleon Regime   
In constant density matter have solution with constant ω=ω0
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minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

The total energy density subject to this constraint is min-
imized when

ω2
0 =

(m2 + ε|s0|2)
q2

. (15)

The equations Eq. (15) and Eq. (16) allow us to solve for
both ω0 and |s0| inside large constant density objects, for
either sign of m2. For m2 > 0, the solution is

ω0 =
m22 4

3 + 3
(
−

√
(ερ/q)2 − 16m6

27 + ερ/q

) 2
3

3q2 2
3

(
−

√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

, (16)

while for m2 < 0, the solution is

ω0 =
−m22 4

3 − 3
(√

(ερ/q)2 − 16m6

27 − ερ/q

) 2
3

3q2 2
3

(√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

. (17)

For both cases

|s0| =
√

ρ

2qω0
. (18)

For positive m2, in the limit

|m| " (ερ)
1
3 , (19)

the equations Eq. (17) and Eq. (19) become

ω0 ≈ m/q

|s| ≈
√

ρ

2qm
, (20)

while for negative m2, in this limit we have

ω0 ≈ ερ

2qm2

|s0| ≈ m√
ε

. (21)

Note that in the latter case the expectation value of the
scalar field is approximately the same inside a macroscopic
object and in vacuum, and the chameleon effect is negligi-
ble.

For either sign of m2, in the limit

|m| % (ερ)
1
3 (22)

an approximate solution is

ω0 ≈ (ερ) 1
3

q

|s| ≈
(ρ

ε

) 1
3

. (23)

The effective screening length of the paraphoton inside
a macroscopic object is given by

$V ≡ (
√

2qg|s|)−1 =
√

ω0

2qg2ρ
. (24)

Comparison of equations Eq. (15), Eq. (25) and Eq. (??)
shows that when m2 > 0, the condition for an s condensate
inside matter to be energetically favorable is, up to factors
of order 1, equivalent to the condition

$V <
∼R , (25)

i.e., the object should be larger than the vector screening
length.

When m2 < 0, the chameleon effect is significant when
the value of ε satisfies Eq. (23). The constraint in turn
bounds the mass of the physical scalar excitations of the
condensate. If $(0)V

−1 is the mass of the paraphoton in vac-
uum, and mH is the vacuum mass of the scalar associated
with the Higgs mechanism, then the condition Eq. (23) for
a significant chameleon effect may be written

mH % g2ρ$(0)V

2
∼ ρ/〈s〉20 . (26)

We now turn to the conditions for equations Eq. (15)
and Eq. (16) to yield the correct values of the vector and
scalar fields deep inside the object. We assume $V % R,
and note that for constant s, the equation for ω is just a
Yukawa equation. Hence as long as s is constant inside
the object, assuming that ω = ω0 deep inside the object
and falls to zero on a length scale $V outside the object is
consistent with equation Eq. (14). Note that outside the
object, when ω ≈ ω0, the s field does not decay. Hence s
decays to its vacuum value at a longer length scale than ω
field does. Beyond a distance 1/ω0 from the object, since
ω ≈ 0, s decays with an effective length scale $S

$S ≡
1

meff
=

1√
m2 + εs2

0

=
1

qω0
. (27)

When both $V and $S are much smaller than the size R of
the object, the total energy density for the field configura-
tion is dominated by the volume inside the object, and so
we expect the solution deep inside the objects to approach
equations Eq. (15) and Eq. (16). We will refer to the case
of $S,V % R as the thin shell case. Comparison of eqs
Eq. (25) shows that for a given R there is a lower limit on
g for any value of m, ε for a thin shell

g >∼

√
1

ρR3
(28)

that is, the charge of the object has to be larger than 1/g2.
For centimeter sized objects of typical solid density, a thin
shell is possible only for g >∼ 10−12.

Another case where equations (15) and (16) yield the
correct values is when the chameleon effect is negligible,
with $V ≈ $(0)V . The experimental constraints on this case
have already been analyzed extensively [? ].

A final case is where $(0)V % R, but $(0)S is larger than
R. In this case screening of charged objects is energetically
favorable, but the s and ω fields will not approach constant
values. We will refer this this case as a the non thin shell
chameleon, and discuss it in the next section.

At high density gauge
boson mass proportional

to density1/3, arbitrarily big



➡As long as size R> vector screening length lV,             
scalar screening length ls, fields ≈ constant 
inside

Approximate solution for large objects
in “thin shell” chameleon regime
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minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

The total energy density subject to this constraint is min-
imized when

ω2
0 =

(m2 + ε|s0|2)
q2

. (15)

The equations Eq. (15) and Eq. (16) allow us to solve for
both ω0 and |s0| inside large constant density objects, for
either sign of m2. For m2 > 0, the solution is

ω0 =
m22 4

3 + 3
(
−

√
(ερ/q)2 − 16m6

27 + ερ/q

) 2
3

3q2 2
3

(
−

√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

, (16)

while for m2 < 0, the solution is

ω0 =
−m22 4

3 − 3
(√

(ερ/q)2 − 16m6

27 − ερ/q

) 2
3

3q2 2
3

(√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

. (17)

For both cases

|s0| =
√

ρ

2qω0
. (18)

For positive m2, in the limit

|m| " (ερ)
1
3 , (19)

the equations Eq. (17) and Eq. (19) become

ω0 ≈ m/q

|s| ≈
√

ρ

2qm
, (20)

while for negative m2, in this limit we have

ω0 ≈ ερ

2qm2

|s0| ≈ m√
ε

. (21)

Note that in the latter case the expectation value of the
scalar field is approximately the same inside a macroscopic
object and in vacuum, and the chameleon effect is negligi-
ble.

For either sign of m2, in the limit

|m| % (ερ)
1
3 (22)

an approximate solution is

ω0 ≈ (ερ) 1
3

q

|s| ≈
(ρ

ε

) 1
3

. (23)

The effective screening length of the paraphoton inside
a macroscopic object is given by

$V ≡ (
√

2qg|s|)−1 =
√

ω0

2qg2ρ
. (24)

Comparison of equations Eq. (15), Eq. (25) and Eq. (??)
shows that when m2 > 0, the condition for an s condensate
inside matter to be energetically favorable is, up to factors
of order 1, equivalent to the condition

$V <
∼R , (25)

i.e., the object should be larger than the vector screening
length.

When m2 < 0, the chameleon effect is significant when
the value of ε satisfies Eq. (23). The constraint in turn
bounds the mass of the physical scalar excitations of the
condensate. If $(0)V

−1 is the mass of the paraphoton in vac-
uum, and mH is the vacuum mass of the scalar associated
with the Higgs mechanism, then the condition Eq. (23) for
a significant chameleon effect may be written

mH % g2ρ$(0)V

2
∼ ρ/〈s〉20 . (26)

We now turn to the conditions for equations Eq. (15)
and Eq. (16) to yield the correct values of the vector and
scalar fields deep inside the object. We assume $V % R,
and note that for constant s, the equation for ω is just a
Yukawa equation. Hence as long as s is constant inside
the object, assuming that ω = ω0 deep inside the object
and falls to zero on a length scale $V outside the object is
consistent with equation Eq. (14). Note that outside the
object, when ω ≈ ω0, the s field does not decay. Hence s
decays to its vacuum value at a longer length scale than ω
field does. Beyond a distance 1/ω0 from the object, since
ω ≈ 0, s decays with an effective length scale $S

$S ≡
1

meff
=

1√
m2 + εs2

0

=
1

qω0
. (27)

When both $V and $S are much smaller than the size R of
the object, the total energy density for the field configura-
tion is dominated by the volume inside the object, and so
we expect the solution deep inside the objects to approach
equations Eq. (15) and Eq. (16). We will refer to the case
of $S,V % R as the thin shell case. Comparison of eqs
Eq. (25) shows that for a given R there is a lower limit on
g for any value of m, ε for a thin shell

g >∼

√
1

ρR3
(28)

that is, the charge of the object has to be larger than 1/g2.
For centimeter sized objects of typical solid density, a thin
shell is possible only for g >∼ 10−12.

Another case where equations (15) and (16) yield the
correct values is when the chameleon effect is negligible,
with $V ≈ $(0)V . The experimental constraints on this case
have already been analyzed extensively [? ].

A final case is where $(0)V % R, but $(0)S is larger than
R. In this case screening of charged objects is energetically
favorable, but the s and ω fields will not approach constant
values. We will refer this this case as a the non thin shell
chameleon, and discuss it in the next section.

R
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minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

The total energy density subject to this constraint is min-
imized when

ω2
0 =

(m2 + ε|s0|2)
q2

. (15)

The equations Eq. (15) and Eq. (16) allow us to solve for
both ω0 and |s0| inside large constant density objects, for
either sign of m2. For m2 > 0, the solution is

ω0 =
m22 4

3 + 3
(
−

√
(ερ/q)2 − 16m6

27 + ερ/q

) 2
3

3q2 2
3

(
−

√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

, (16)

while for m2 < 0, the solution is

ω0 =
−m22 4

3 − 3
(√

(ερ/q)2 − 16m6

27 − ερ/q

) 2
3

3q2 2
3

(√
(ερ/q)2 − 16m6

27 − ερ/q

) 1
3

. (17)

For both cases

|s0| =
√

ρ

2qω0
. (18)

For positive m2, in the limit

|m| " (ερ)
1
3 , (19)

the equations Eq. (17) and Eq. (19) become

ω0 ≈ m/q

|s| ≈
√

ρ

2qm
, (20)

while for negative m2, in this limit we have

ω0 ≈ ερ

2qm2

|s0| ≈ m√
ε

. (21)

Note that in the latter case the expectation value of the
scalar field is approximately the same inside a macroscopic
object and in vacuum, and the chameleon effect is negligi-
ble.

For either sign of m2, in the limit

|m| % (ερ)
1
3 (22)

an approximate solution is

ω0 ≈ (ερ) 1
3

q

|s| ≈
(ρ

ε

) 1
3

. (23)

The effective screening length of the paraphoton inside
a macroscopic object is given by

$V ≡ (
√

2qg|s|)−1 =
√

ω0

2qg2ρ
. (24)

Comparison of equations Eq. (15), Eq. (25) and Eq. (??)
shows that when m2 > 0, the condition for an s condensate
inside matter to be energetically favorable is, up to factors
of order 1, equivalent to the condition

$V <
∼R , (25)

i.e., the object should be larger than the vector screening
length.

When m2 < 0, the chameleon effect is significant when
the value of ε satisfies Eq. (23). The constraint in turn
bounds the mass of the physical scalar excitations of the
condensate. If $(0)V

−1 is the mass of the paraphoton in vac-
uum, and mH is the vacuum mass of the scalar associated
with the Higgs mechanism, then the condition Eq. (23) for
a significant chameleon effect may be written

mH % g2ρ$(0)V

2
∼ ρ/〈s〉20 . (26)

We now turn to the conditions for equations Eq. (15)
and Eq. (16) to yield the correct values of the vector and
scalar fields deep inside the object. We assume $V % R,
and note that for constant s, the equation for ω is just a
Yukawa equation. Hence as long as s is constant inside
the object, assuming that ω = ω0 deep inside the object
and falls to zero on a length scale $V outside the object is
consistent with equation Eq. (14). Note that outside the
object, when ω ≈ ω0, the s field does not decay. Hence s
decays to its vacuum value at a longer length scale than ω
field does. Beyond a distance 1/ω0 from the object, since
ω ≈ 0, s decays with an effective length scale $S

$S ≡
1

meff
=

1√
m2 + εs2

0

=
1

qω0
. (27)

When both $V and $S are much smaller than the size R of
the object, the total energy density for the field configura-
tion is dominated by the volume inside the object, and so
we expect the solution deep inside the objects to approach
equations Eq. (15) and Eq. (16). We will refer to the case
of $S,V % R as the thin shell case. Comparison of eqs
Eq. (25) shows that for a given R there is a lower limit on
g for any value of m, ε for a thin shell

g >∼

√
1

ρR3
(28)

that is, the charge of the object has to be larger than 1/g2.
For centimeter sized objects of typical solid density, a thin
shell is possible only for g >∼ 10−12.

Another case where equations (15) and (16) yield the
correct values is when the chameleon effect is negligible,
with $V ≈ $(0)V . The experimental constraints on this case
have already been analyzed extensively [? ].

A final case is where $(0)V % R, but $(0)S is larger than
R. In this case screening of charged objects is energetically
favorable, but the s and ω fields will not approach constant
values. We will refer this this case as a the non thin shell
chameleon, and discuss it in the next section.

!V = (MV )−1 = (
√

2qg|s|)−1

 



Thin Shell Near a Large Object

➡vector field falls 
exponentially on scale  lV

➡scalar field falls on larger 
of scales ls, lv
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When m2 is negative the paraphoton acquires a vacuum
mass

mV =
√

2qg|s| . (5)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of range λV ≡ m−1

V , and strength α (between 2 neutrons)
relative to gravity

α ≡ g2

4πGNm2
N

. (6)

For a vector gauge boson, the mass However in matter,
the value of the s condensate can be substantially larger
than it is in vacuum, reducing the range of the force, and
changing its apparent strength. Note that any massive
vector particle receiving mass from the Higgs mechanism
has a chameleon nature. However the chameleon effect is
only significant when there exists a scalar whose potential
is flat enough (small enough mass and self coupling) so
that the scalar expectation value changes significantly.

A. Thin Shell Approximation to Chameleon Vector
Force

We now turn to more detailed consideration of the cou-
pled s and paraphoton dynamics, assuming an s conden-
sate inside macroscopic chunks of ordinary matter.

We begin by reviewing scalar chameleonic fields [Refs].
For a real field ψ coupled to a static source j, with po-

tential V (ψ), a static configuration which minimizes the
total energy solves the equation of motion

−∇2ψ +
∂V

∂ψ
= j . (7)

For a constant source, a solution ψ0 for ψ can be found
such that

∂V

∂ψ

∣∣
ψ=ψ0

= j . (8)

The effective mass for ψ excitations in a constant back-
ground field ψ is

meff ≡ 1
λψ

=

√
∂2V

∂ψ2
. (9)

The screening length λpsi0 is the effective length scale of
the force mediated by the ψ field inside a large constant
density object.

For an object of finite size which is much larger than
λ(ψ0), physical arguments and numerical studies [? ] show
that ψ → ψ0 in the bulk of the object. Outside the surface
of the object, ψ falls rapidly on a scale of order λψ0 . Thus
between large objects, λψ0 is the effective range over which
the force is strong, and effectively only a ”thin shell” of
thickness λ0 acts as a source for the field. This range
is always shorter than the range in vacuum. When λψ0

is much shorter than the vacuum range, then, on scales
between λψ0 and the vacuum range, there is a much weaker
residual force, whose strength αeffcompared to gravity is
of order[? ]

αeff ∼
1

εM1M2GN
, (10)

where ε is the self-coupling [? ].
The case of a vector chameleon is similar, except that

there are two fields s and B, with matter acting as a source
for the B field, and the B field in turn acting as negative
term in the potential for s. To estimate the range of an
exotic force between macroscopic objects, it is useful to
first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine an screening length for the s and B fields. As for
a scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approx-
imation is to take the fields inside the object to equal to
their values the would have inside an infinite sized object.
Outside a sufficiently large object the fields drop exponen-
tially fast beyond their screening lengths.

To determine the screening lengths for large objects, we
first consider a time independent background charge B−L
charge density ρ. The s field carries a charge density ρs

ρs = −iq(D0ss
∗ − s∗D0s) . (11)

For a minimal energy configuration of given charge, we
take s to have the form |s((x)|e−iqwt. Then it is convenient
to define a gauge invariant[3]. field

ω ≡ w + gB0 . (12)

For a spatially uniform configuration, ω is the energy per
unit charge contained in the s condensate, which, for ε = 0,
is simply the s particle mass divided by its charge. In
general nonzero ε raises qω to a value greater than m.
Note that in general ω depends on the background charge
density ρ.

To minimize the total energy for a static configuration
where ω and |s| are position dependent, one must solve the
coupled, nonlinear equations of motion

∇2|s| =
(
m2 + ε|s|2 − q2ω2

)
|s|

∇2ω = −g2ρ + 2q2g2ω|s|2 . (13)

Note that
√

2|q|g|s| acts as the effective mass for ω.
Note also that there is no source for s. The combination√

m2 + ε|s|2 − q2(ω2) acts as an effective mass for s. For
negative m2, there will be an s condensate in vacuum. For
positive m2, the presence of an s condensate in matter is
due to the fact that the ω field provides a negative effective
mass squared term for s.

We now consider a spatially uniform background charge
density ρ, and find the the values of ω and |s| which will
minimize the total energy. We will refer to these values
as ω0 and s0. Finite energy requires neutrality of the s
condensate plus background which implies

−2q2ω0|s0|2 = ρs = −ρ . (14)

scalar

vector

Screened
Charged
Source



Example:   gauge B-L
➡ vev of  B-L charged scalar gives gauge 

boson mass (or effective mass in matter)

➡anomaly free in Standard Model with 3 
right handed neutrinos

➡earth, ordinary matter has net B-L charge

➡B-L unbroken in vacuum? (if scalar 
extremely light, positive mass) 
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Viable Light Dark Matter?

➡Dark matter of mass (1-10 MeV) proposed 
for Integral positron signal

➡p-wave annihilation for cosmology and 
gamma constraints requires new light boson 

19
Boehm, Fayet, Silk 2003

Example:

Fayet, 1980
Boehm and Fayet, 2003



astro Contraints on light bosons
➡ vector boson with vacuum mass mV            

10-1 eV<mV<10 MeV, eg coupled to B-L
➡Strongest Constraint at light end from 

energy loss in red giants: g<10-13 Grifols, Masso, Peris

➡Also supernova constraints, fixed target 
➡What if it is a chameleon in   dense 

matter?
➡density in stellar core  ∼ 2×105 gm/cm3

➡mV ≈g(ρ/ε)1/3  inside  or near stars, detectors, 
could be heavy enough to evade constraints

20



Evading Constraints on vector boson
(if couple to B, L) continued

➡at high charge density mV∼ρ1/3

➡ for  red giant:  (ρcore/ρearth)1/3∼50
➡  allows new gauge boson on earth to be as much as 

50 times lighter than stellar evolution bound for 
given coupling

➡ 50000 times lighter than SN bound

➡ boson in space  could be much lighter than on earth 
(or massless)
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“The study of non-linear physics is like the 
study of non-elephant biology.”
                                                                                                            Reynolds  

22

Landscape of exotic possibilities for 
particle physics generically includes 
environment dependence of mass and 
coupling strength of new particles





Backup slides
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ATIC/FERMI discrepancy?
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