Searches for Exotics in Upsilon Decays at BaBar

Hojeong Kim, SLAC

Dark Force Workshop September 24, 2009

Outline

- Motivation
- Present four recent exotics searches at BaBar:

Higgs searches

- Y(3S,2S) $\rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$
- $Y(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^-$
- Y(3S)→γA⁰, A⁰→invisible

Dark Matter search

• $Y(3S) \rightarrow \pi^+\pi^-Y(1S)$, $Y(1S) \rightarrow invisible$

PRL 103, 081803 (2009)

Submitted to PRL

arXiv:0906.2219

Preliminary

arXiv:0808.0017

Submitted to PRL arXiv:0908.2840

Summary

Motivation

Light exotic particle can be discovered at BaBar!

Exotic particles:

- Light CP-odd Higgs
- Axion-like Pseudoscalar particle
- Dark Matter (DM) candidate

Motivation for Higgs searches

$$Y(3S,2S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$$

 $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$
 $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \text{invisible}$

Motivation for Higgs Searches

Next-to-Minimal Supersymmetric SM

- It solves hierarchy problem by extending Higgs sector
- It leads to a CP-odd Higgs A⁰
 - Its mass can be less than 2m_b
 - Large BF for Y→γA⁰ is expected

 R. Dermisek et al., PRD 76, 051105 (2007)

Look for η_b mass region

- Recently discovered at BaBar
 - Confirmed by CLEO
 BEAUTY 2009, K. Seth's talk

8.8<m_{A0}<9.2 GeV

Motivation for $A^0 \rightarrow \mu^+\mu^-$

Axion-like Pseudoscalar particle

- TeV-scale DM that annihilates into them
- Predicts BF(Y $\rightarrow \gamma$ A⁰) to be 10⁻⁶~10⁻⁵ at m_{A0} around 400~800 MeV
- A⁰ dominantly decays into μ⁺μ⁻ Nomura, Thaler, PRD 79, 075008 (2009)

HyperCP experiment

 Observed resonance-like feature at ~214 MeV decaying into μ⁺μ⁻

Mangano, Nason, Mod. Phys. Lett. A 22, 1373 (2007)

Motivation for DM search

 $Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S), Y(1S) \rightarrow invisible$

Motivation for DM Search

Light scalar DM couple to SM thru new Gauge boson U

McElrath, PRD 72, 103508 (2005)

- This theory can explain
 - INTEGRAL's detection of 511 keV gamma rays from the galactic center. If it's from DM annihilation into e+e-, DM's mass: 1~100MeV Phys.Rev.Lett. 92, 101301 (2004)
- Estimated Branching Fraction:
 - BF(Y(1S) → vv) ~ 9.9x10⁻⁶
 - BF(Y(1S) $\to \chi \chi$) ~ 4.2x10⁻⁴ (s-wave)
 - BF(Y(1S) $\rightarrow \chi \chi$) ~ 1.8x10⁻³ (p-wave)

Searches for Higgs

 $Y(3S,2S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \text{invisible}$

Searches for Higgs from Upsilon decays

- Wilczek proposed to look at Y→γA⁰ PRL 39, 1304 (1977)
- Key feature: two body decay
 - Photon energy is related to the Higgs (recoil) mass
- Scan for bumps
- BaBar data sample contains 122x10⁶ Y(3S), 99x10⁶ Y(2S) events

Previous Searches

- CLEO has limit on BF(Y(1S)→γA⁰)
 - $A^0 \rightarrow \mu^+ \mu^-$
 - UL @ 10⁻⁶~10⁻⁵
 - m_{A0} range:
 0.201~3.565 GeV
 - $A^0 \rightarrow \tau^+ \tau^-$
 - UL @ 10-5~10-4
 - m_{A0} range:

4.03~9.5 GeV

W. Love et al., PRL 101, 151802 (2008)

Searches for Higgs

 $Y(3S,2S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \text{invisible}$

$Y(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$

Event Selection

- Fully-reconstructed final state: exactly 2 oppositelycharged tracks, 1 photon with E*>0.2 GeV
- At least one track should satisfy μ particle ID
- Y candidate is energy and beam spot constrained
- Muon pair & photon are back-to-back in CM
- Signal eff: 24~55%

Dominant Background

- QED continuum events
 e⁺e⁻→γμ⁺μ⁻
- ISR production of ρ^0
 - Require both tracks to satisfy muon PID in 0.5<m_{A0}<1.05 GeV
- ISR production of Y(1S)
 - $Y(2S) \rightarrow \gamma_2 \chi_b(1P), \chi_b(1P) \rightarrow \gamma_1 Y(1S)$
 - $Y(3S) \rightarrow \gamma_2 \chi_b(2P), \chi_b(2P) \rightarrow \gamma_1 Y(1S)$
 - Require no secondary photon(γ₂) with E*>0.1(2S),
 0.08(3S) GeV

Scan strategy

- Extended unbinned ML fit in 1951 scan points
 - Mass range: m_{A0}=0.212~9.3 GeV
 - Step size: 2-5 MeV steps,
- Fit to "reduced mass" $m_R = \sqrt{m_{A^0}^2 4 m_\mu^2} = 2 |p_\mu^{A^0}|$
- Probability Density Functions:
 - Signal: Sum of two Crystal Ball functions
 - Peaking bkg: φ, J/ψ, ψ(2S), Y(1S)
 - PDF (same as signal), included in fit
 - J/ ψ , ψ (2S) veto (exclude ~40(25) MeV near J/ ψ (ψ (2S)) mass)
 - Continuum bkg: tanh function for low mass (m_{A0}<0.23) and Chebychev polynomial

Scan Result

- Sign(N_{sig})xsqrt(2log(L_{max}/L₀)) distribution
- Agrees with standard normal distribution for null hypothesis. => No significant outliers

Results

- Rule out Higgs interpretation of HyperCP events
- Limit on BF($\eta_b \rightarrow \mu^+ \mu^-$)<0.9% at 90% CL
- Combined result is related to the effective Yukawa coupling f_Y

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to l^+ l^-)} = \frac{f_{\Upsilon}^2}{2\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2} \right)$$

• For m_{A0}<1GeV, f_Y<0.12f_YSM PRL 103, 081803 (2009)

Searches for Higgs

 $Y(3S,2S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \text{invisible}$

$Y(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^-$

Event Selection

- Both τ decay leptonically (ee, eμ, μμ modes)
- Partially-reconstructed final states: 1 photon with E_γ>100MeV, exactly two charged tracks
- Signal eff:10~14%(ee),
 22~26%(eμ), 12~20%(μμ)
- E_{γ} resolution: 8~55MeV grows with E_{γ}

Dominant Background

- QED continuum events
 e⁺e⁻→γτ⁺τ⁻
- Higher order QED events such as e+e⁻→e+e⁻e+e⁻, e+e⁻→e+e⁻μ+μ⁻
- Constrain on missing mass/angle, angle btw photon and plane of leptons, total energy, ...
- Optimize in 5 E_y ranges

Scan Stragety

- Binned ML fit in 307 scan points, simultaneously to all modes in E_γ distribution (step size= 0.5xσ(E_γ))
- Signal PDF: Crystal Ball function
- Peaking bkg:
 - $Y(3S) \rightarrow \gamma \chi_b, \chi_b \rightarrow \gamma Y(1S,2S)$ $Y(1S,2S) \rightarrow \tau^+\tau^-$
 - Crystal Ball functions

Bkg distribution for E_v<2GeV

Scan Result

- N_{sig}/σ(N_{sig}) distribution
- Agrees with standard normal distribution for null hypothesis. => No significant outliers

Results

Submitted to PRL arXiv:0906.2219

• Set a limit on BF($\eta_b \rightarrow \tau^+ \tau^-$)<8% at 90% CL

Searches for Higgs

 $Y(3S,2S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$ $Y(3S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \text{invisible}$

$Y(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow invisible$

- Require a single photon with E*_γ>2.2 GeV, no charged tracks
- Little activities in the detector is required
- Resolution for signal event: 1.5~0.7GeV, shrinks as m_{A0} increases
- Signal eff: 10~11%(E*_{\gamma}
 >3GeV), ~20%(E*_{\gamma}<3GeV)

Dominant Background

- QED process e⁺e⁻→γγ
 - Peaking bkg, include in fit
- Radiative Bhabha event e+e→γe+e-, two photon fusion event
 - Non peaking, include in fit
- Previous searches by CLEO
 - UL @ 10⁻⁵~10⁻³ (@90% CL) Balest et al., PRD 51, 2053 (1995)

A⁰→invisible

Scan Strategy

- Unbinned extended ML fit to distribution of missing mass squared $m_X^2 \equiv m_{\Upsilon(3S)}^2 2E_\gamma^* m_{\Upsilon(3S)}$
 - In steps of 100 MeV (E*_y>3GeV), 25 MeV(E*_y<3GeV)</p>
- Signal PDF: Crystal Ball 3
- Continuum PDF:
 Exponential function
- Peaking Bkg:
 - From e⁺e⁻→γγ
 - Fixed in fit

A⁰→invisible

Result

90% CL Bayesian UL: (0.7~31)x10-6

Orders of magnitude improvement from CLEO result

Preliminary arXiv:0808.0017

BaBar constraints on NMSSM Predictions for Y→γA⁰

8.8<m_{A0}<9.2 GeV

CLEO-BaBar comparison

CLEO-BaBar Comparison

Search for DM

 $Y(3S) \rightarrow \pi^+\pi^-Y(1S)$, $Y(1S) \rightarrow invisible$

$Y(3S) \rightarrow \pi^+\pi^-Y(1S)$, $Y(1S) \rightarrow invisible$

- Estimated Branching Fraction:
 - BF(Y(1S)→vv) ~ 9.9x10⁻⁶
 - BF(Y(1S) $\rightarrow \chi \chi$) ~ 4.2x10⁻⁴ (s-wave)
 - BF(Y(1S) $\to \chi \chi$) ~ 1.8x10⁻³ (p-wave)
- To ensure Y(1S) in the event with suppressed bkg:
 Y(3S)→π+π-Y(1S)
- Previous searches by
 - CLEO, BF(Y(1S)→invisible)<3.9x10⁻³ @ 90%CL PRD 75, 031104 (2007)
 - Belle, BF(Y(3S)→π+π-Y(1S), Y(1S)→invisible)<2.5x10-3 @90%CL PRL 98, 132001 (2007)

$Y(3S) \rightarrow \pi^+\pi^-Y(1S)$, $Y(1S) \rightarrow invisible$

Event Selection

- Exactly two lowmomentum oppositely charged tracks & little activity in the detector
- Cuts optimized using multivariate method
 - $\pi^+\pi^-$ vertex is from IP
 - Angle and p_T of $\pi^+\pi^-$
 - π pass e, K, μ PID or not
- Signal efficiency ~ 18%

Background

- Non-peaking background is suppressed by more than a factor of 1000
- Peaking backgrounds
 - where Y(3S) decays into leptons/hadrons
- Use Y(1S)→ℓ+ℓ sample
 with 1 or 2 leptons
 reconstructed for
 calibration, cross-checks

Y(1S)→invisible

Strategy

-Y(1S) mass is known!

- Look at recoil mass $M_{\rm rec}^2 = s + M_{\pi\pi}^2 2\sqrt{s}E_{\pi\pi}^*$
 - Sqrt(s)=10.3552 GeV/c²
 - M_{rec} should be Y(1S) mass
- Do not look at data in Signal Region
 - Optimize cuts using signal MC and sidebands
 - From MC 2444 ± 123
 peaking background events
 are expected

Y(1S)→invisible

Result

Extended unbinned ML fit to recoil mass distribution on data

- Non-peaking bkg:
 - 1st order polynomial
- Peaking PDF (Crystal Ball)
 - Includes signal and peaking background
 - Yield: 2326 ± 105 evts
- Bayesian UL at 90% CL: BF(Y(1S)→invis.)<3.0x10⁻⁴
- 91.4x10⁶ Y(3S) events used for BF/UL calculation

 Order of magnitude improvement from Belle result

Submitted to PRL arXiv:0908.2840

Summary

- No observed signal of CP-odd Higgs in radiative Y(2S,3S) decays in $\mu^+\mu^-$, $\tau^+\tau^-$, invisible final states
 - Set upper limits that rule out much of available parameter space
 - Rule out Higgs interpretation of HyperCP anomaly
 - Set the first limits on BF of exclusive η_b decays
 - BF($\eta_b \to \mu^+ \mu^-$)<0.9%, BF($\eta_b \to \tau^+ \tau^-$)<8% (@90% CL)
- No observed signal of DM in invisible decays of Y(1S)
 - Set the most stringent UL: BF(Y(1S)→invis.)<3.0x10⁻⁴
 - Significant constraints on the models of light DM

Summary

 m_{A0} <2 m_{τ} 2 m_{τ} < m_{A0} <7.5 GeV 7.5< m_{A0} <8.8 GeV 8.8< m_{A0} <9.2 GeV

BF(Y(1S)→invis.)<3.0x10⁻⁴ CLEO, Belle's UL ~ 10⁻³ Theory prediction: 10⁻⁴~10⁻³

BaBar Detector

BaBar 2008 Dataset

122 Million Y(3S)

99 Million Y(2S)

Searches for Higgs from Upsilon decays

Y(1~3S) has better sensitivity to new physics than
 Y(4S) due to narrow width.

■ Γ1~3S: 20~50 keV

■ Γ4S: ~20 MeV

Reduced Mass

- Signal extraction: ML fit in slices of invariant mass
 - Variable of choice is "reduced mass"

$$m_R \;\; = \;\; \sqrt{m_{A^0}^2 - 4 m_{\mu}^2} = 2 |p_{\mu}^{A^0}|$$

Smooth threshold A RooPlot of "Reduced Mass"

behavior

2000

4 RooPlot of "Reduced Mass"

Reduced Mass distribution

HyperCP Mass (m_{A0}=214MeV)

 $m_{A0} = 0.214 GeV \sim m_R = 0.034 GeV$

η_b region

 $m_{A0} = 9.389 \text{GeV} \sim m_{R} = 9.387 \text{GeV}$

Background distributions

2nd and 3rd out of 5 photon energy regions

Scan Result

