Supersymmetric Hidden Sectors at a GeV

arXiv:0904.2567 [hep-ph]

(with D. Morrissey and K. Zurek)

David Poland

Harvard University

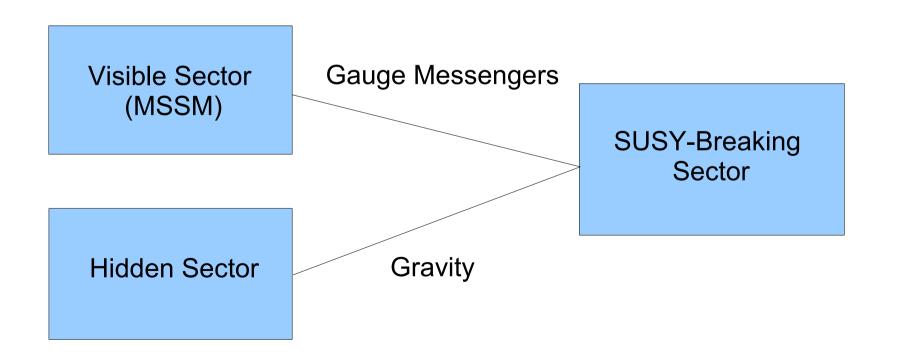
Supersymmetry and Gauge Mediation

- Weak-scale supersymmetry (with R-parity) is an elegant proposal for BSM physics
 - Stabilizes hierarchy problem
 - Gauge coupling unification
 - Possible dark matter candidates
 - Exciting LHC phenomenology
- However, it leads to a new puzzle:
 - Why are SUSY-breaking masses flavor blind?

This motivates mediating SUSY-breaking through gauge interactions, or *gauge/gaugino mediation*

Light Hidden Sectors

- States uncharged under the "messenger" gauge group are typically *lighter* than the visible sector (assuming they don't talk directly to SUSY breaking...)
- Without additional interactions, hidden-sector mass scales will be set by the gravitino mass $m_{3/2} \sim F/M_{pl}$



U(1) Hidden Sectors at a GeV [Baumgart, et al '09], [Cui, Morrissey, DP, Randall '09]

Kinetic mixing with hypercharge:

$$\int d^2\theta \frac{\epsilon(\mu)}{2} B^{\alpha} X_{\alpha}$$

Induced through RGE running from bi-fundamentals:

$$\Delta \epsilon(\mu) \simeq \frac{g_x(\mu)g_Y(\mu)}{16\pi^2} \sum_i x_i Y_i \ln\left(\frac{\Lambda^2}{\mu^2}\right) \sim \left(10^{-2} - 10^{-3}\right)$$

• This shifts the U(1)_x D-term potential by $\xi_Y \equiv \langle D_Y \rangle$, inducing hidden-sector VEVs at the GeV scale:

$$V_{x} = \frac{g_{x}^{2}}{2} \left(\sum_{i} |\phi_{i}|^{2} - \frac{\epsilon}{g_{x}} \xi_{Y} \right)^{2} \qquad \langle \phi_{i} \rangle \simeq \sqrt{\frac{\epsilon \xi_{Y}}{x_{i} g_{x}}} \sim GeV$$

A Simple Question

What are the simplest *viable* Abelian hidden sectors in the context of gauge (and gaugino) mediation?

Little Gauge Mediation

- What happens to hidden-sector gaugino masses?
 - In holomorphic basis, running is one-loop exact:

$$\int d^{2}\theta \left[\frac{1}{4g_{Y}^{2}(\mu, M)} B^{\alpha} B_{\alpha} + \frac{1}{4g_{x}^{2}(\mu)} X^{\alpha} X_{\alpha} + \frac{\epsilon_{h}}{2} B^{\alpha} X_{\alpha} \right] + h.c.$$

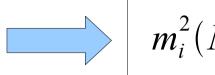
– Only g_{γ} depends on messenger threshold M, which is promoted to a chiral superfield $X = M + \theta^2 F$

$$M_{gaugino} = \begin{pmatrix} M_1 & 0 \\ 0 & 0 \end{pmatrix}$$

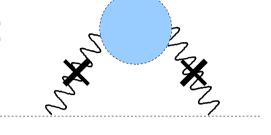
(up to terms suppressed as $\sim \epsilon_h^2/(16\pi)^3 F/M$)

Little Gauge Mediation

• Similarly, can evaluate scalar masses:



$$m_i^2(M) \simeq \epsilon_h^2 x_i^2 g_x^4(M) m_{E^c}^2(M)$$



• Scalar masses are suppressed by a factor of $\sqrt{\epsilon}$ relative to D-term contribution!

- RGE effects generate hidden-sector A and B terms at order $\epsilon^2 M_1$ (also O(1) corrections to scalar masses)
 - $U(1)_R$ -breaking parameters suppressed by a factor of ϵ relative to scalar masses!

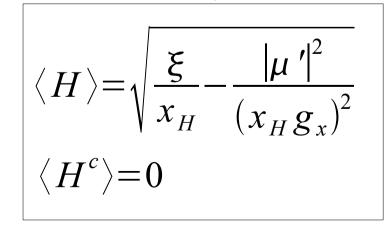
First Model Attempt...

Vector-like pair of fields {H,H°} charged under U(1)_x

$$W = \mu' H H^c$$

(To leading order in ϵ , we can ignore soft terms...)

$$V = |\mu'|^2 (|H|^2 + |H^c|^2) + \frac{g_x^2}{2} (x_H |H|^2 - x_H |H^c|^2 - \xi)^2$$



$$\xi = -\frac{\epsilon}{2} \frac{g_Y}{g_x} c_{2\beta} v^2$$

First Model Attempt...

 The VEV breaks the gauge group and leads to the fermion masses:

$$M^{f} = \begin{pmatrix} 0 & 0 & m_{Z_{x}} \\ 0 & 0 & \mu' \\ m_{Z_{x}} & \mu' & 0 \end{pmatrix} \qquad M^{f}_{2,3} = \sqrt{m_{Z_{x}}^{2} + |\mu'|^{2}}$$

$$M^{f}_{1} = 0$$

First Model Attempt...

 The VEV breaks the gauge group and leads to the fermion masses:

$$M^{f} = \begin{pmatrix} 0 & 0 & m_{Z_{x}} \\ 0 & 0 & \mu' \\ m_{Z_{x}} & \mu' & 0 \end{pmatrix} \qquad M^{f}_{2,3} = \sqrt{m_{Z_{x}}^{2} + |\mu'|^{2}}$$

$$M^{f}_{1} = 0$$

- Neglecting subleading U(1)_R-breaking terms, there is a massless "Goldstino" state!
 - Mass gets lifted to: $M_1^f \sim \frac{B\mu'}{\mu'} \sim \epsilon^2 g_x^2 M_1$
 - This state is problematic...
 - No efficient annihilation channels
 - Stable ($< m_{3/2}$) or *very* long-lived ($> m_{3/2}$)
- A possible fix is to go to the (incalculable) regime m_{3/2}~GeV

Hidden NMSSM

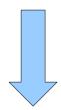
See also: [Cheung et al '09] [Katz,Sundrum '09]

Add a singlet S into the hidden sector

$$W = \lambda S H H^c$$

(To leading order in ϵ , we can ignore soft terms...)

$$V = |\lambda|^2 |H|^2 (|H^c|^2 + |S|^2) + |\lambda|^2 |H^c|^2 |S|^2 + \frac{g_x^2}{2} (x_H |H|^2 - x_H |H^c|^2 - \xi)^2$$



$$\langle H \rangle = \sqrt{\frac{\xi}{x_H}}, \langle H^c \rangle = \langle S \rangle = 0$$

$$\xi = -\frac{\epsilon}{2} \frac{g_Y}{g_x} c_{2\beta} v^2$$

Hidden NMSSM

- Only H gets a VEV, leading to a vacuum that preserves supersymmetry at leading order
 - $W = \lambda \langle H \rangle S H^c$ gives a supersymmetric mass to $\{S, H^c\}$
 - V_x and H combine to form massive vector multiplet
 - No light states!
 - LHP is either S scalar ($m_S^2 < 0$) or gauge-sector fermion
- However, there are still some dangers!
 - LHP could decay to gravitino+photon after BBN
 - If (meta)stable, still need efficient annihilation channel
- We can organize according to m_{3/2}...

Hidden NMSSM with $m_{_{3/2}}$ << $m_{_{LHP}}$

- If the (stable) S scalar is lightest
 - No efficient annihilation channels
 - Only viable if higher dim operators allow decays

Hidden NMSSM with $m_{3/2}^{<<} m_{LHP}^{}$

- If the (stable) S scalar is lightest
 - No efficient annihilation channels
 - Only viable if higher dim operators allow decays
- If the gauge sector is lightest [Cheung, Ruderman, Wang, Yavin '09]
 - S scalar annihilates to H scalar, which decays as:

$$\tau_{h\to ee} \sim (1\times 10^{-4} s) \left(\frac{0.1}{g_x x_H}\right)^2 \left(\frac{GeV}{m_h}\right) \left(\frac{10^{-3}}{\epsilon}\right)^4$$

Fermion decays to gravitino+photon with lifetime:

$$\tau_{f \to \gamma \tilde{g}} \sim (3 \times 10^3 s) \left(\frac{\sqrt{\langle F \rangle}}{100 \, TeV} \right)^4 \left(\frac{GeV}{m_x} \right)^5 \left(\frac{10^{-3}}{\epsilon} \right)^2$$

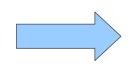
Messes up BBN unless F is very low!

Hidden NMSSM with $m_{3/2} \sim m_{LHP}$

- We could attempt to avoid this problem by pushing the gravitino mass close to the fermion mass
- Generically, gravity effects make this incalculable
- Also, adding $U(1)_R$ breaking tends to push $M_f < M_{Zx}$, so it is easy to lose phase space for annihilation

Hidden NMSSM with $m_{3/2} \sim m_{LHP}$

- We could attempt to avoid this problem by pushing the gravitino mass close to the fermion mass
- Generically, gravity effects make this incalculable
- Also, adding $U(1)_R$ breaking tends to push $M_f < M_{Zx}$, so it is easy to lose phase space for annihilation



Both of these problems are absent if generic M_{pl} -suppressed operators are sequestered

[Randall, Sundrum '99]

Hidden NMSSM with Sequestering

 In this case hidden-sector parameters receive contributions from anomaly mediation: $\Delta m_{hid} \sim M_x \sim \frac{g_x^2 m_{3/2}}{\left(4\pi\right)^2}$

- With $m_{3/2} \sim m_{hid}$, the spectrum is only slightly perturbed
 - Still only H gets a VEV, gauge fermion mass becomes

$$M^f = \begin{pmatrix} M_x & m_{Z_x} \\ m_{Z_x} & 0 \end{pmatrix} \longrightarrow M_1^f \sim m_{Z_x} - \frac{1}{2} M_x$$

 Mass splitting is smaller than temperature at thermal freeze-out, allowing annihilation to gauge bosons:

$$\langle \sigma v \rangle \sim (7 \times 10^{-24} \, cm^3 / s) \left(\frac{g_x x_H}{0.1} \right)^4 \left(\frac{GeV}{m_{Z_x}} \right)^2 \left(\frac{v_{f.o.}}{0.3} \right)$$

Hidden NMSSM with Sequestering

- To summarize...
 - Before gravity effects, the LHP is either the gauge fermion or singlet scalar
 - If the singlet is lightest, it has no efficient annihilation channels and is not viable without higher dim ops
 - If the fermion is lightest, decays to gravitino+photon are problematic for BBN unless F is very low
 - Making $m_{3/2} \sim m_{hid}$ forbids this decay, and sequestering gravity effects allows the fermion to efficiently annihilate

- Note that if the scalar can decay through higher dim ops, one can also go to the regime $m_{3/2}{\sim}100\,GeV$ [Katz, Sundrum '09]
 - Easy to add weak-scale DM to this scenario

Closing Thoughts

- Light hidden sectors are generic in gauge mediation
- Simple U(1) HS models often have problems with overabundance or BBN constraints
- These can be avoided either by:
 - Allowing for fast LHP decays (low F or higher dim ops)
 - Forbidding the LHP decay in a way that preserves an annihilation channel (larger m_{3/2} + seq)
- These hidden sectors are perhaps the simplest examples of hidden valleys [Strassler]
 - Lots of fun collider phenomenology!
- DM applications interesting, but should also keep an open mind: BSM physics may not solve existing problems!