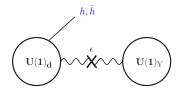
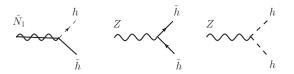
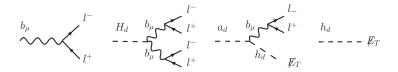
## Defining and Simulating Lepton Jets


Joshua T. Ruderman Princeton University

September 24, 2009


C. Cheung, JTR, LT. Wang, and I. Yavin, 0909.0290

## A Benchmark Model


Supersymmetric U(1) dark sector with two higgs.



Decays to the dark sector:

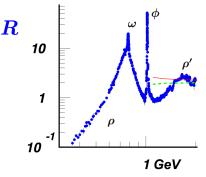


Dark scalar decays in terms of the mass eigenstates  $(b_d, H_d, a_d, h_d)$ 



## Dark Radiation and Decays to Hadrons

Boosted dark particles shower through dark interactions:


 $h - \gamma_{i}$ 

The number of radiated photons is determined by the Sudakov double log,

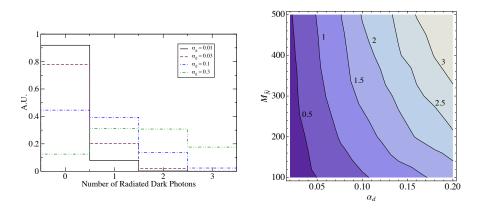
$$N_{\gamma_d} \sim rac{lpha_d}{2\pi} \log\left(rac{M_{
m decay}^2}{M_{
m dark}^2}
ight)^2$$

We Monte Carlo this with a virtuality-ordered parton shower.

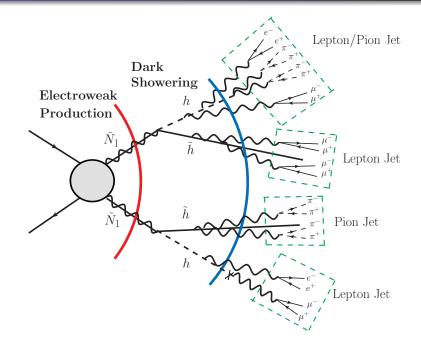
Dark photons couple to  $J^{\mu}_{\rm EM}$  which includes hadrons.



The branching fraction to hadrons for a given  $m_{b_{\mu}}$  is determined by:


$$R = rac{\sigma(e^+e^- 
ightarrow ext{hadrons})}{\sigma(e^+e^- 
ightarrow \mu^+\mu^-)}$$

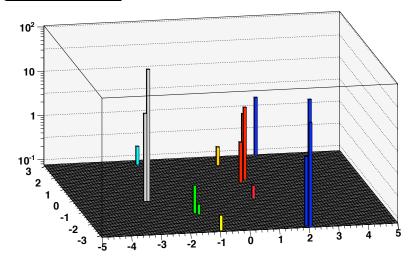
## Radiation Rate


The number of radiated dark photons depends on  $\alpha_d$  and  $M_{\tilde{N}_1}$ .

Rare Z decays:

Neutralino decays:




# Lepton Jets and Pion Jets



# Lepton Jet Monte Carlo

We simulate lepton jets with Madgraph and our own simple parton shower and decay routines.

### Lepton Jet Event



An experimental definition should be as *inclusive* as possible, while controlling the background of QCD jets.

As a template, we suggest an inclusive lepton cone surrounded by an isolation annulus\*:

•  $\Delta R < 0.1$ 

 $\geq$  2 leptons each with  $p_T$  > 10 GeV.

hadronic isolation cut  $\Sigma p_T < 3$  GeV.

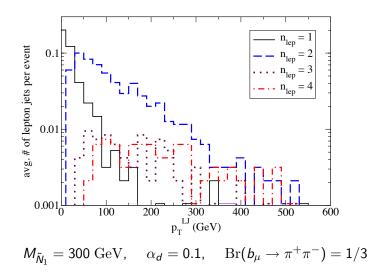
#### • $0.1 < \Delta R < 0.4$ ,

hadronic/leptonic isolation cut of  $\Sigma p_T < 3 \ {
m GeV}$ 

\* We thank the participants of Boost 2009 for useful discussions concerning this definition.

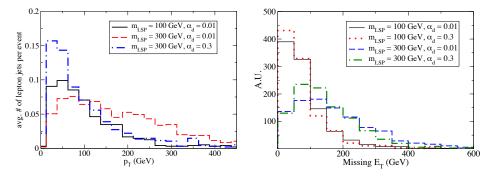
# Signal Efficiency

The efficiency to find 1 or 2 lepton jets per event,  $M_{\tilde{N}_1} = 300 \text{ GeV}$ .


| Lepton Jet Efficiencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |                |              |             |             |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------|--------------|-------------|-------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1 Lepton-Jet |                | 2 Lepton-Jet |             |             |  |  |  |  |  |  |
| $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ | 1/7         | 1/3          | 3/5            | 1/7          | 1/3         | 3/5         |  |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.49 (0.49) | 0.47 (0.47)  | 0.31 (0.31)    | 0.28 (0.28)  | 0.14 (0.15) | 0.05(0.05)  |  |  |  |  |  |  |
| 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.47 (0.47) | 0.44(0.45)   | 0.31(0.32)     | 0.3 (0.31)   | 0.16 (0.16) | 0.04 (0.04) |  |  |  |  |  |  |
| 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.43 (0.41) | 0.47(0.48)   | 0.3(0.3)       | 0.27(0.3)    | 0.14 (0.16) | 0.04 (0.05) |  |  |  |  |  |  |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43(0.39)  | 0.41 (0.44)  | 0.29(0.32)     | 0.23(0.3)    | 0.13 (0.18) | 0.05 (0.07) |  |  |  |  |  |  |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.38(0.32)  | 0.34(0.36)   | $0.25\ (0.34)$ | 0.16 (0.3)   | 0.11 (0.22) | 0.05(0.09)  |  |  |  |  |  |  |

The lepton multiplicity of the hardest lepton jet,  $M_{\tilde{N}_1} = 300 \text{ GeV}$ .

| Lepton Multiplicity in Clean Lepton Jets                                       |           |      |      |           |      |      |           |      |      |  |  |  |
|--------------------------------------------------------------------------------|-----------|------|------|-----------|------|------|-----------|------|------|--|--|--|
|                                                                                | 2 Leptons |      |      | 4 Leptons |      |      | 6 Leptons |      |      |  |  |  |
| $\begin{array}{ c c c } & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & &$ | 1/7       | 1/3  | 3/5  | 1/7       | 1/3  | 3/5  | 1/7       | 1/3  | 3/5  |  |  |  |
| 0                                                                              | 0.49      | 0.44 | 0.29 | 0.28      | 0.17 | 0.07 | 0.        | 0.   | 0.   |  |  |  |
| 0.01                                                                           | 0.53      | 0.43 | 0.29 | 0.25      | 0.18 | 0.06 | 0.        | 0.   | 0.   |  |  |  |
| 0.03                                                                           | 0.47      | 0.46 | 0.29 | 0.26      | 0.16 | 0.06 | 0.01      | 0.01 | 0.   |  |  |  |
| 0.1                                                                            | 0.42      | 0.43 | 0.32 | 0.25      | 0.16 | 0.06 | 0.04      | 0.02 | 0.   |  |  |  |
| 0.3                                                                            | 0.35      | 0.38 | 0.34 | 0.21      | 0.11 | 0.05 | 0.07      | 0.04 | 0.01 |  |  |  |


# Lepton Jet $p_T$ vs Number of Leptons

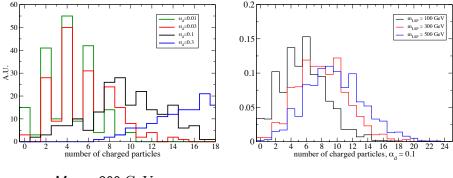
We find a population of isolated soft leptons accompanying harder lepton jets.



Lepton Jet  $p_T$ 

Missing  $E_T$ 




Showering reduces lepton jet  $p_T$ 's.

# Showering and Charge Multiplicity

Showering increases the number of charged particles (with  $p_T > 3 \text{ GeV}$ ) per event and makes odd numbers more likely.

Varying  $\alpha_d$ ,

Varying  $M_{\tilde{N}_1}$ ,



 $M_{\tilde{N}_1} = 300 {
m ~GeV}$ 

## The Rest of the Event

We have been focusing on the lepton jets, but there's typically more going on in these events.

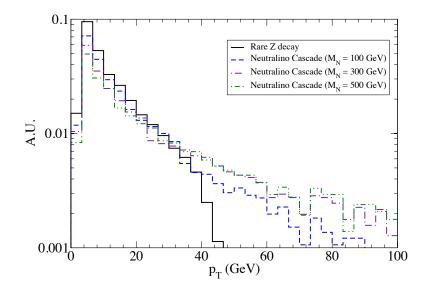
- Showering produces soft photons which can decay to pairs of isolated and soft leptons.
- Depending on the SM LSP, decay into the dark sector can be accompanied by the production of hard SM states.

For example,

$$egin{array}{rcl} ilde{l}^{\pm} & 
ightarrow & I^{\pm} + LJ \ ilde{W}^{\pm} & 
ightarrow & W^{\pm} + LJ \ ilde{q} & 
ightarrow & j + LJ \end{array}$$

• SM SUSY cascades.

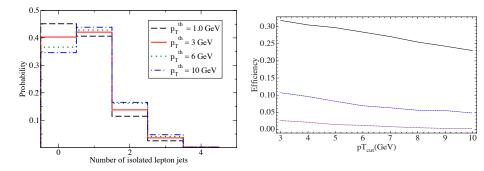
These additional states complicate the events but can be triggered on.


As a next step, it is important to study the SM backgrounds that slip through this lepton jet definition.

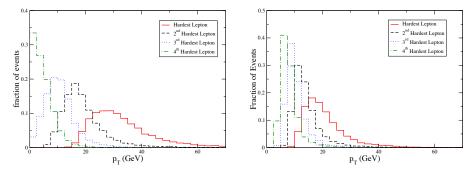
Such a study should include detector simulation.

- QCD jets that fake lepton jets
- Off-shell photons and photon conversion
- $J/\psi$  decays

Additional cuts will probably be required.


Backup Slides:

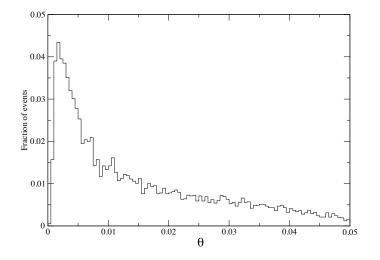



## Varying the Lepton Jet Definition

Lowering the isolation requirement,

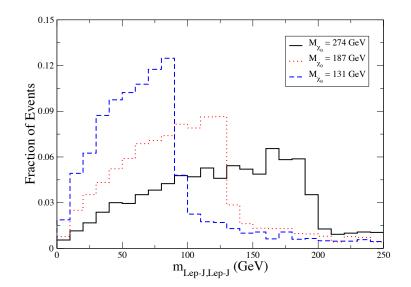
Lowering the  $p_T$  requirement of the second hardest lepton,




The spread in lepton  $p_T$ 's should allow them to be differentiated.



Events resulting from prompt  $b_{\mu}$  production with  $p_{T} > 50$  GeV.


# Lepton Opening Angle

Maximum opening angle in lepton jets with 4 leptons,  $\theta \sim m_b/p_T$ .



# Lepton Jet Edges

The  $\tilde{N}_1$  mass can be determined by measuring lepton jet edges.

