Methodical Accelerator Design Highlights on Coupling Calculations Part II - Propagation

Laurent Deniau
CERN - Beams Department
laurent.deniau@cern.ch
22 November, 2017 BE/ABP-HSS meeting, CERN

Objectives

Establish equations given in the MAD8 Phy.G.
Cross-check equations used by MAD-X code.
Record assumptions and limitations.
Discussion...

Propagation of the map

Given the known decoupled sector map $M_{1 \perp}$ at point 1 (from initialization) and the transport map M_{12} from points 1 to 2, we look for the unknown decoupled sector map $M_{2 \perp}$ at point 2:

$$
\begin{aligned}
M_{2} & =M_{12} M_{1} M_{12}^{-1} \\
& =M_{12}\left(R_{M_{1}} M_{1 \perp} R_{M_{1}}^{-1}\right) M_{12}^{-1} \\
M_{2 \perp} & =R_{M_{2}}^{-1} M_{2} R_{M_{2}} \\
& =\left(R_{M_{2}}^{-1} M_{12} R_{M_{1}}\right) M_{1 \perp}\left(R_{M_{1}}^{-1} M_{12}^{-1} R_{M_{2}}\right) \\
& =W_{12} M_{1 \perp} W_{12}^{-1}
\end{aligned}
$$

where we have $W_{12} W_{12}^{-1}=I$.

Block diagonal propagation

Since the eigen modes $1 \& 2$ in $M_{1 \perp}$ and $M_{2 \perp}$ are independent from each other, W_{12} is either block or anti-block diagonal:

$$
\begin{aligned}
R_{M_{2}} W_{12} & =M_{12} R_{M_{1}} \\
g_{2}\left(\begin{array}{cc}
I & \bar{R}_{2} \\
-R_{2} & I
\end{array}\right)\left(\begin{array}{cc}
E_{12} & 0 \\
0 & F_{12}
\end{array}\right) & =g_{1}\left(\begin{array}{ll}
A_{12} & B_{12} \\
C_{12} & D_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \bar{R}_{1} \\
-R_{1} & I
\end{array}\right)
\end{aligned}
$$

Solving for E_{12}, F_{12} and R_{2} gives (MAD8 Phys.G. eq. 7.10 and 7.11):

$$
\begin{align*}
E_{12} & =g_{12}\left(A_{12}-B_{12} R_{1}\right) \\
F_{12} & =g_{12}\left(D_{12}+C_{12} \bar{R}_{1}\right) \tag{typo}\\
R_{2} & =-g_{12}\left(C_{12}-D_{12} R_{1}\right) E_{12}^{-1} \\
& =-g_{12}\left(C_{12}-D_{12} R_{1}\right) \bar{E}_{12} /\left|E_{12}\right| \\
& =-g_{12}^{2}\left(C_{12}-D_{12} R_{1}\right) \overline{\left(A_{12}-B_{12} R_{1}\right)} /\left(g_{12}^{2}\left|A_{12}-B_{12} R_{1}\right|\right) \\
& =-\left(C_{12}-D_{12} R_{1}\right) \overline{\left(A_{12}-B_{12} R_{1}\right)} /\left|A_{12}-B_{12} R_{1}\right|
\end{align*}
$$

where $g_{12}=g_{1} g_{2}^{-1}$.

Anti-block diagonal propagation

Since the eigen modes $1 \& 2$ in $M_{1 \perp}$ and $M_{2 \perp}$ are independent from each other, W_{12} is either block or anti-block diagonal:

$$
\begin{aligned}
R_{M_{2}} W_{12} & =M_{12} R_{M_{1}} \\
g_{2}\left(\begin{array}{cc}
I & \bar{R}_{2} \\
-R_{2} & I
\end{array}\right)\left(\begin{array}{cc}
0 & E_{12} \\
F_{12} & 0
\end{array}\right) & =g_{1}\left(\begin{array}{ll}
A_{12} & B_{12} \\
C_{12} & D_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \bar{R}_{1} \\
-R_{1} & I
\end{array}\right)
\end{aligned}
$$

Solving for E_{12}, F_{12} and R_{2} gives (not in MAD8 Phys.G.):

$$
\begin{aligned}
E_{12} & =g_{12}\left(B_{12}+A_{12} \bar{R}_{1}\right) \\
F_{12} & =g_{12}\left(C_{12}-D_{12} R_{1}\right) \\
R_{2} & =-g_{12}\left(D_{12}+C_{12} \bar{R}_{1}\right) E_{12}^{-1} \\
& =-g_{12}\left(D_{12}+C_{12} \bar{R}_{1}\right) \bar{E}_{12} /\left|E_{12}\right| \\
& =-g_{12}^{2}\left(D_{12}+C_{12} \bar{R}_{1}\right) \overline{\left(B_{12}+A_{12} \bar{R}_{1}\right)} /\left(g_{12}^{2}\left|B_{12}+A_{12} \bar{R}_{1}\right|\right) \\
& =-\left(D_{12}+C_{12} \bar{R}_{1}\right) \overline{\left(B_{12}+A_{12} \bar{R}_{1}\right)} /\left|B_{12}+A_{12} \bar{R}_{1}\right|
\end{aligned}
$$

where $g_{12}=g_{1} g_{2}^{-1}$.

Propagation of the map revisited

$$
M_{2 \perp}=W_{12} M_{1 \perp} W_{12}^{-1}
$$

Block diagonal:

$$
\begin{aligned}
E_{2} & =E_{12} E_{1} E_{12}^{-1}=E_{12} E_{1} \bar{E}_{12} /\left|E_{12}\right| \\
& =g_{12}^{2 /}\left(A_{12}-B_{12} R_{1}\right) E_{1} \overline{\left(A_{12}-B_{12} R_{1}\right)} /\left(g_{12}^{2 /}\left|A_{12}-B_{12} R_{1}\right|\right) \\
F_{2} & =F_{12} F_{1} F_{12}^{-1}=F_{12} F_{1} \bar{F}_{12} /\left|F_{12}\right| \\
& =g_{12}^{2}\left(D_{12}+C_{12} \bar{R}_{1}\right) F_{1} \overline{\left(D_{12}+C_{12} \bar{R}_{1}\right)} /\left(g_{12}^{2}\left|D_{12}+C_{12} \bar{R}_{1}\right|\right)
\end{aligned}
$$

Anti-block diagonal (flip modes $1 \& 2$):

$$
\begin{aligned}
E_{2} & =E_{12} F_{1} E_{12}^{-1}=E_{12} F_{1} \bar{E}_{12} /\left|E_{12}\right| \\
& =g_{12}^{2 /}\left(B_{12}+A_{12} \bar{R}_{1}\right) F_{1} \overline{\left(B_{12}+A_{12} \bar{R}_{1}\right)} /\left(g_{12}^{2 /}\left|B_{12}+A_{12} \bar{R}_{1}\right|\right) \\
F_{2} & =F_{12} E_{1} F_{12}^{-1}=F_{12} E_{1} \bar{F}_{12} /\left|F_{12}\right| \\
& =g_{12}^{2 /(}\left(C_{12}-D_{12} R_{1}\right) E_{1} \overline{\left(C_{12}-D_{12} R_{1}\right)} /\left(g_{12}^{2}\left|C_{12}-D_{12} R_{1}\right|\right)
\end{aligned}
$$

where E_{2}, F_{2} and R_{2} depend only on M_{12}, E_{1}, F_{1} and R_{1} but not g_{12} !

Flipping modes

- Modes $1 \& 2$ are flipped if determinants become negative or zero:
$\forall \varepsilon \in \mathbb{R}^{+} \rightarrow 0, \quad\left|A_{12}-B_{12} R_{1}\right|<\varepsilon$ or $\left|D_{12}+C_{12} \bar{R}_{1}\right|<\varepsilon$. In this case anti-block diagonal solutions must be used.
- Modes $1 \& 2$ can be flipped only in elements that couple the $X-Y$ motions!
- In any case, the number of mode flips should always be even so that eigenaxis are the same at the start and the end of the sector map, otherwise the computed phase advance will not be correct!

Twiss parameters propagation

MAD-X propagates the Twiss parameters through M_{12} using:

$$
T_{2}=W_{12} T_{1} W_{12}^{-1} \quad \text { with } \quad T_{E, F}=\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

Propagation through E_{12} :

$$
\begin{aligned}
\alpha_{2} & =-\left(\left(E_{2,1} \beta_{1}-E_{2,2} \alpha_{1}\right)\left(E_{1,1} \beta_{1}-E_{1,2} \alpha_{1}\right)+E_{1,2} E_{2,2}\right) /\left(\left|E_{12}\right| \beta_{1}\right) \\
\beta_{2} & =\left(\left(E_{1,1} \beta_{1}-E_{1,2} \alpha_{1}\right)^{2}+E_{1,2}^{2}\right) /\left(\left|E_{12}\right| \beta_{1}\right) \\
\mu_{2} & =\mu_{1}+\operatorname{atan}\left(E_{1,2},\left(E_{1,1} \beta_{1}-E_{1,2} \alpha_{1}\right)\right) \\
\gamma_{2} & =\left(1+\alpha_{2}^{2}\right) / \beta_{2}
\end{aligned}
$$

Idem for F_{12}.

Conclusions and comments

Propagation relies on same requirements as initialization - no more, e.g. the transport map M_{12} doesn't need to be exactly symplectic.

Is propagation of normal form less stable than full computation?
What about implementing the complete tracking of M ?
i.e. recompute $\Lambda_{A, D}, R, E$, and F from scratch.

Fast tracking requires that M_{12} is symplectic, otherwise M_{12}^{-1} must be truly computed (still reasonable).

Summary of stable linearized coupled motion

Initialization from symplectic sector map M :

$$
\begin{aligned}
& \Delta=(\operatorname{tr} A-\operatorname{tr} D)^{2}+4|C+\bar{B}| \geq 0 \\
& R=-\left(\frac{1}{2}(\operatorname{tr} A-\operatorname{tr} D)+\frac{1}{2} \operatorname{sign}(\operatorname{tr} A-\operatorname{tr} D) \sqrt{\Delta}\right)^{-1}(C+\bar{B}) \\
& E=A-B R \\
& F
\end{aligned}=D+R B \text {. }
$$

Propagation through M_{12} :

$$
\begin{aligned}
& E_{2}=E_{12} E_{1} \bar{E}_{12} /\left|E_{12}\right| \quad \text { with } \quad E_{12}=A_{12}-B_{12} R_{1} \\
& F_{2}=F_{12} F_{1} \bar{F}_{12} /\left|F_{12}\right| \quad \text { with } F_{12}=D_{12}+C_{12} \bar{R}_{1} \\
& R_{2}=-\left(C_{12}-D_{12} R_{1}\right) \bar{E}_{12} /\left|E_{12}\right|
\end{aligned}
$$

Propagation through M_{12} with mode flip:

$$
\begin{aligned}
& E_{2}=E_{12} F_{1} \bar{E}_{12} /\left|E_{12}\right| \quad \text { with } \quad E_{12}=B_{12}+A_{12} \bar{R}_{1} \\
& F_{2}=F_{12} E_{1} \bar{F}_{12} /\left|F_{12}\right| \quad \text { with } \quad F_{12}=C_{12}-D_{12} R_{1} \\
& R_{2}=-\left(D_{12}+C_{12} \bar{R}_{1}\right) \bar{E}_{12} /\left|E_{12}\right|
\end{aligned}
$$

