First results from the MEG/RE12 experiment at PSI

10

A.M. Baldini 29 sep 2009

Hep-ex:0908.2594v1 18 Aug 2009

Most recent $\mu^{+} \rightarrow e^{+} \gamma$ Experiments

Lab.	Year	Upper limit	Experiment or Auth.
PSI	1977	< 1.0 × 10 ⁻⁹	A. Van der Schaaf <i>et al</i> .
TRIUMF	1977	< 3.6 × 10 ⁻⁹	P. Depommier <i>et al</i> .
LANL	1979	$< 1.7 \times 10^{-10}$	W.W. Kinnison <i>et al</i> .
LANL	1986	< 4.9 × 10 ⁻¹¹	Crystal Box
LANL	1999	< 1.2 × 10 ⁻¹¹	MEGA
PSI	~2011	~ 10 ⁻¹³	MEG

Two orders of magnitude improvement tough experimental challenge! But

several SUSY GUT and SUSY see-saw models predict BRs at the reach of MEG

combined LEP results favour tan_b>10

<u>SO10</u>

V_{PMNS} (v oscillations) \rightarrow cLFV

Independent contribution to slepton mixing from v masses (see-saw model): V less known

J. Hisano, N. Nomura, Phys. Rev. D59 (1999)

If it is seen it is not SM!

The sensitivity is limited by the accidental background

$$n_{\rm sig} \propto R_{\mu} \ , n_{\rm phys.b.} \propto R_{\mu} \ , \ n_{\rm acc.b.} \propto R_{\mu}^2$$

The n. of acc. backg events $(n_{acc.b.})$ depends quadratically on the muon rateand on how well we measure the experimental quantities: $e-\gamma$ relative timing and angle, positron and photon energy

Effective BRback ($n_{back}/R\mu T$)

$$BR_{acc} \propto R_{\mu} \times \Delta t_{e\gamma} \times \Delta \theta_{e\gamma}^{2} \times \Delta E_{e} \times \Delta E_{\gamma}^{2}$$

Integral on the detector resolutions of the Michel and radiative decay spectra

Required Performances

 $BR(\mu \rightarrow e\gamma) \approx 10^{-13}$ reachable

BRacc.b. \approx 2 10⁻¹⁴ and BRphys.b. \approx 0.1 BRacc.b. with the following resolutions

Exp./Lab	Year	$\frac{\Delta E_e/E_e}{(\%)}$	$\frac{\Delta E_{\gamma}/E_{\gamma}}{(\%)}$	$\Delta t_{e\gamma}$ (ns)	$\Delta \theta_{e\gamma}$ (mrad)	Stop rate (s ⁻¹)	Duty cyc.(%)	BR (90% CL)
SIN	1977	8.7	9.3	1.4	-	5 x 10 ⁵	100	3.6 x 10 ⁻⁹
TRIUMF	1977	10	8.7	6.7	-	2 x 10 ⁵	100	1 x 10 ⁻⁹
LANL	1979	8.8	8	1.9	37	2.4 x 10 ⁵	6.4	1.7 x 10 ⁻¹⁰
Crystal Box	1986	8	8	1.3	87	4 x 10 ⁵	(69)	4.9 x 10 ⁻¹¹
MEGA	1999	1.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	1.2 x 10 ⁻¹¹
MEG	2011	0.8	4	0.15	19	2.5 x 10 ⁷	100	1 x 10 ⁻¹³

8

FWHM

Need of a DC muon beam

Experimental method

Detector outline

- Stopped beam of 3 10⁷ μ /sec in a 150 μm target
- Solenoid spectrometer & drift chambers for e⁺ momentum
 - Scintillation counters for e⁺ timing
- Liquid Xenon calorimeter for γ detection (scintillation)
- Method proposed in 1998: PSI-RR-99-05: 10⁻¹⁴ possibility
- MEG proposal: september 2002: 10⁻¹³ goal: A. Baldini and T. Mori spokespersons: Italy, Japan, Switzerland, Russia

Detector Construction

Next slides...

- 1. The PSI π E5 beamline
- 2. The Positron spectrometer
- 3. The Liquid Xenon calorimeter
- 4. DAQ
- 5. The 2008 run
- 6. Future

1) The PSI π E5 DC beam

 π stop at rest: fully polarized

P [MeV/c]

Beam studies

Optimization of the beam elements:

- Wien filter for μ /e separation
- Degrader to reduce the momentum stopping in a 150 μm CH_2 target
- Solenoid to couple beam with COBRA spectrometer

Results (4 cm target):

- R_μ (total)
 R_μ (total)
 Z-version
 1.3*10⁸ μ⁺/s
- R_{μ} (after W.filter & Coll.) 1.1*10⁸ μ^+/s
- R_{μ} (stop in target) 6*10⁷ μ ⁺/s
- Beam spot (target) $\sigma \approx 10 \text{ mm}$

 $\square \mu$ /e separation (at collimator) 7.5 σ (12 cm)

 $10^8~\mu/s$ could be stopped in the target but only 3×10^7 are used because of accidental background

2) The positron spectrometer: COBRA spectrometer

COnstant Bending RAdius (COBRA) spectrometer

• High p_T positrons quickly swept out

Uniform field

• Constant bending radius independent of emission angles

- $B_c = 1.26T$ current = 359A
- Five coils with three different diameters
- Compensation coils to suppress the stray field around the LXe detector
- · High-strength aluminum stabilized superconductor

 \Rightarrow thin magnet

 $(1.46 \text{ cm Aluminum}, 0.2 X_0)$

Gradient field

The drift chambers

2 10⁻³ X₀ along positrons trajectory

- One (outer) layer of scintillator read by PMTs : timing
- One inner layer of scintillating fibers read by APDs: trigger (the long. Position $5 \times 5 \text{ mm}^2$

is needed for a fast estimate of the positron direction) •Goal σ_{time} ~ 40 psec (100 ps FWHM)

The liquid xenon calorimeter

	PMT development	
1 st generation R6041Q	2 nd generation R9288TB	3 rd generati
228 in the LY (2003 CEX and TERAS) 127 in the LP (2004 CEX)	111 In the LP (2004 CEX)	Not used ye
Rb-Sc-Sb	K-Sc-Sb	K-Sc-Sb
Mn layer to keep surface resistance at low temp.	Al strip to fit with the dynode pattern to keep surface resistance at low temp.	Al strip der 4% loss of
14 compact version	Higher QE ~12-14%	Higher QE-
QE~4-6% Under high rate backgrount, PMT output reduced by 10 -20% with a time constant of order of 10min.	Good performance in high rate BG Still slight reduction of output in very high BG	Much bette high BG
	24	

Xenon purification

New (2009) liquid phase purification system completely made inside the collaboration (F. Sergiampietri)

Calorimeter energy Resolution and unifo MeV by means of

(VoM 20.0) sinovo lo rodmuN

Detection efficiency

- The probability to detect a signal γ -ray within the detector acce computed using the Monte Carlo simulation;
- The probability that the energy of a 52.8 MeV γ -ray is reconstru MeV (0.66) is corrected by taking into account
- position resolution smearing for the acceptance;
- positron direction smearing;
- $\mathbf{E}_{(\gamma)} = 0.61 \pm 0.03$
- confirmed by π^{o} and RD spectra

CW beam line

29

-

7:42

PIES area back side Fri.Sep.14,200716:1

inser the

"Time stretcher" GHz → MHz

Keep Domino wave running in a circular fashioi stop by trigger → Domino Ring Sampler (DRS)

Low cost
One "oscilloscope" per channel

Liquid xenon: waveforms: 2 digitizers

Trigger@100 MHz

DRS2 @ 50 or <u>2 GI</u>

ę.

4) 2008 run

- First 3 months physics data taking (september-december 2008) -DCHs instability on part of the chambers after some months of operation: reduction of efficiency to 30% (now 2009 corrected: new HV distribution system)

-Xe LY increase (now 2009 at the nominal value)

CW Calibration each three days during 2008 run

α-source and Li line

- The position of the **¤**-source peak is ~the same as year 2008
- The Li peak (17.6 MeV) is higher!
- around ~ 30k phe
- it was at < 22k phe
- integration still not optimized for this year's waveform

2009

In 2009 xenon scintillation wavefor the right time decay constant: long gammas

2

2008 run : 10¹⁴ muons stopped in

DCH resolutions from 2008

Timing resolutions from 2008 date

Intrinsic timing resolution by using positrons hitting several bars

DRS4

Dedicated RMD runs at lower thre

Blind analysis: E_{γ} vs $\Delta t_{\gamma e}$ wind

Likelihood analysis: accidentals + ro + signal PDFs to fit data + Feldman

Best fit in the signal region

Agreement of 3 different analyses

Note: all the other parameters are cut to select -90% of signal ev

Normalization: measured Michel events simultan the normal MEG trigger

$$N_{e\gamma} = BR(\mu^+ \to e^+ \gamma) \cdot k$$

$$f_{S} \equiv A(DC) \cdot \varepsilon(track, p_{e} > 50 \text{MeV} | DC) \cdot \varepsilon(TC | p_{e} > 5)$$
$$f_{M} \equiv \dots |_{M}$$

-Independent of instantaneous beam rate

 Nearly insensitive to positron acceptance and efficiency factors DCH and TC

90% CL limit

- 90 % C.L. $N_{Sig} \le 14.6$ corresponds to BR($\mu \rightarrow e_1$
 - Computed sensitivity 1.3 x 10⁻¹¹
- Statistical fluctuation 5%
- From side bands analysis we expected 0.9 (lef $(right) \times 10^{-11}$
 - Bad luck

Future prospects

- Re-start of data taking in september, until december (as
- Instabilities eliminated: DRS2→DRS4 (timing improveme reduction)
- Data taking and trigger efficiencies: 3-5 factor improver •
- Corresponding improvement in sensitivity: 2-4 * 10⁻¹² for •
- Continue running in 2010 + 2011 for the final (10⁻¹³) goal

č		
		2008
	ly	2007
	Assembl	2006
	٩	2005
		2004
osal 	& D	2003
Prop	£	2002
		2001
	ng	2000
	Planni	1999
Lol		1998

http://meg.p http://meg.pl. http://meg.icepp.s.u More details at

Pu

- ullet For suitable geometry big η factors can be obtained
- This is not the case for MEG (detailed calculations are ne
- In some theories (minimal SU(5) model) the positron has \rightarrow P_µ is less effective

