

Passive Optical Networks in Particle Physics Experiments

24th November, PH-ESE Seminar

Work conducted by PH-ESE-BE-OPTO Team Members

ioannis.papakonstantinou@cern.ch

24/11/2009

Outline

- Commercial PON technologies
- PONs in Timing Systems for HEP
- Future PONs and their implications in Timing Systems

Commercial PON technologies

• PON definition

- Motivation for current work
- PON Protocols
- PON Transceivers
- Optical Components

PONs in Access Networks

- Access Networks are the last segment connection from COs (central offices) to customers
- They are also called firstlast mile networks
- Examples of access networks are:
 - ISDN
 - xDSL
 - WiMAX
 - and most recently PONs...

What is a PON?

- PON is a Point-to-MultiPoint (PMP) optical network with no active elements in the signal's path from the source to the destination
- Data are exchanged between a central node, the Optical Line Terminal (OLT), and a number of end terminals, the Optical Network Units (ONUs)
- A long feeder fiber delivers the data close to the ONUs before signal is split by means of an optical splitter and secondary fibers
- According to where ONUs are placed we have different PON versions namely FTTH, FFTC, FFTB etc

General PON Considerations

- In the downstream direction (OLT \rightarrow ONUs) PON is a broadcast network
- ONUs are filtering out data not addressed to them
- In the upstream direction (ONUs→OLT) however a number of customers share the same transmission medium and some channel arbitration mechanism should exist to avoid collisions and to distribute bandwidth fairly among ONUs
- TDM is the preferred multiplexing scheme in first generation PONs as it is very cost effective. Dynamic Bandwidth Allocation Algorithms are employed for fairness. All intelingence is built in the OLTs
- Upstream transmission is of burst mode type

Motivation

- There are currently P2P and P2MP optical links in LHC
- P2P links are used in DAQ due to high bandwidth demands
- P2MP links are used to transmit timing information
- Current TTC system is unidirectional (optically)
- A slow electrical feedback is used to communicate the status of the subdetectors back to the TCS
- It would be beneficial to replace this electrical link with a higher bit rate, "real" time optical link

System Requirements

- System has to be able to deliver synchronous triggers and commands continuously
- Latency has to be fixed at both transmitting and receiving ends
- Recovered clocks have to be of low jitter
- System must provide with the flexibility of both individually addressing or broadcasting to slave nodes
- Slaves have to be able to respond in short time

TDMA PON Protocols

- Ethernet PON (E-PON) established by IEEE. Work started in 2001, completed in 2005. IEEE 802.3-2005
- Supports Ethernet frames
- Giga-bit PON (GPON) established by ITU. Work started in 2001 completed in 2004. ITU G.984
- Supports mixed ATM and Ethernet frames through generic encapsulation method (ITU G.7041)
- >95% of LAN data are of Ethernet type but the battle is still on...

Standard	EPON	GPON
Framing	Ethernet	GEM
Max. BW	1 Gb/s	2.48 Gb/s
Splitting ratio	16	64
Avg. BW / user	60 Mb/s	40 Mb/s
Max. Reach	20 km	20 km

GPON and EPON Frames Downstream EPON MSB

Bandwidth Allocation Schemes

- BW allocation schemes are not part of protocols
- However, both EPONs and GPONs provide with the necessary information for any allocation algorithm to be implemented
- Two main bw allocation schemes:
- A. Fixed/Static Bandwidth Allocation (FBA)
- B. Dynamic Bandwidth Allocation (DBA)

PON Transceivers

- Burst mode laser drivers at Slave (ONU)
- FP lasers and PIN diodes for efficiency
- Burst mode RXs at OLTs
- APDs for high sensitivity and bib lasers
- WDM filters for upstream-downstream multiplexing into one fiber
- Bulk-Optic subassembly packaging method
- Cost: ~900\$/OLT cost ONU ~90\$/ONU. Gigabit Ethernet TRXs \$100 SM

24/09/2009

Optical Components: Splitter

- Two types of splitters are found
- 1) Traditional bi-conic fused silica splitter
- Photonic Lightwave Circuit (PLC) splitter
- PLC has the advantage of smaller footprint
- Better alignment with in/out coupled fibers
- Uniform splitting ratio
- Better scalability
- Temperature stability

PON Demonstrator for TTC Applications

PON system specifications
Protocol in the Upstream/Downstream
Transceiver Design on Virtex 5 FPGA

System Specifications

Property (General)	PON Demonstrator
Clock rate	40 MHz (ie LHC clock rate 40.08MHz)
Max distance	Up to 1000m
Encoding Target BER	NRZ 8b/10b <10 ⁻¹²
Splitting ratio	1:64
Frame Format	Commands + Trigger
BW Allocation Algorithm	Fixed BW
Property (Down Up)	PON Demonstrator
Bit rate	1.6 Gb/s 800 Mb/s
Latency	Fixed and Deterministic To be determined
Received clock jitter	Able to drive a high-speed SERDES

System Power Budget

TWEPP 2009 21-25 Sep. Paris -Optoelectronics and Links Session

PON Demonstrator

- Our system is designed to support 64 slave nodes
- Only 2 slave nodes are used in the first demonstration due to one FPGA platform and number of evaluation board available
- However, all features of a PON can be demonstrated with this system
- Both master and slaves are implemented on the same Virtex 5 platform
- Both physical layer and medium access algorithm have been implemented

PON Demonstrator for TTC Applications

Protocol in the Downstream/Upstream

Downstream Frame

- Synchronous transmission of super-frames with a period of 1625ns
 = 65*25ns at 1.6Gbit/s
- Comma, "K", character for frame alignment and for sync
- T character carries trigger info. "F" for trigger protection or other functions
- D1 and D2 carry broadcast or individually addressed information depending on the first bit of the D1 byte.
- "R" field contains the address of the next ONU to transmit
- 590.8 Mb/s are available for data downstream

Upstream Frame

- Slave N1 receives an R character with its address and switches its laser ON
- IFG between successive emissions allows to master receiver to adapt to different bursts
- Channel arbitration is a logic built-in at the OLT
- Total BW 800Mb/s, 7.7 Mb/s are available per Slave node for pure data

Upstream frame (2)

PON Demonstrator for TTC Applications

Master/Slave Transceiver Design on FPGA

ioannis.papakonstantinou@cern.ch

Master Transmitter

- Latency issues at the Tx arise at clock domain crossing points
- It is particularly important to bypass any elastic buffers in the data path
- In GTX Tx this is achieved by advanced mode which forces PMA PLL to phase align XCLK and RXUSRCLK clocks

Slave Receiver

ioannis.papakonstantinou@cern.ch

- 80 MHz parallel clk can lock on any of the 20 first edges of the 800 MHz serial clk
- That affects the order with which parallel data are exiting the SIPO
- By fitting "K" characters into the frame and identifying them in a Barrel shifter we can predict the starting point of the XCLK

Slave Rx Latency, Barrel Shifter

ioannis.papakonstantinou@cern.ch

24/11/2009

OLT Burst Mode Receiver

Tri-band PONsWDM PONs

24/11/2009

- In a WDM PON scenario each channel (or channel group) is assigned one wavelength upstream and one downstream for communication with OLT
- Benefits are higher bandwidth per channel, loss is independent from splitting ratio, less complicated scheduling algorithm at OLT, easy expansion, better delivery of services
- Main disadvantage is the need for expensive WDM components such as AWGs, filters, tunable lasers / laser arrays / laser per ONU, broadband receivers etc
- "Colorless" WDM PONs are developed to tackle cost issues

Summary

- A passive optical network for timing distribution applications has been successfully demonstrated
- In the downstream direction were trigger is transmitted, deterministic latency has been achieved
- A burst mode receiver was implemented in the upstream

PONs in OSI Architecture

- PONs reside in the last two layers in the OSI architecture namely
- Data link layer which is responsible for the access to the medium and for error correction
- Physical layer which is responsible for transmitting and receiving the information
- In GPON terminology the two layers are called: G-Transmission Convergence (GTC) and Physical Media Dependent (PMD)

DBA Algorithms

- Requirements for DBA:
- a) Fairness: Allocates the bw between users fairly
- b) Low delay: Minimize latency (<1.5 ms for voice channels)
- c) High efficiency: Can increase the efficiency of the bw (throughput) and increase peak rate

- Fair Queuing Scheduling
- Interleaved Polling with Adaptive Cycle Time (IPACT)
- i. Fixed Service
- ii. Limited Service
- iii. Constant Credit Service
- iv. Linear Credit Service
- v. Elastic Service
- Deficit Round-Robin Scheduling
- DBA using Multiple Queue Report Set
- etc ..

FBA - DBA Comparison

- DBA can result in high bw utilization efficiency
- It can also run efficiently different classes of service
- However, efficiency is traded with higher complexity at the scheduler

- FBA algorithm is easy to implement
- However, unused by is wasted
- FBA is not frequently encountered

IPACT Scheduling

• In the Simplest IPACT implementatio n each ONU is granted all requested bw

Limited Service IPACT

0.0 0.1

0.2 0.3 0.4 0.5

0.7 0.8 0.9

1.0

0.6

Offered load

A Li

New ONU Registration EPON

Figure 10-2/G.984.3 - Configuration of the phase delay points

- GPON implements an alternative equalization scheme
- A variable delay EqD is introduced at the ONU
- EqD has the objective to male all ONUs appear equidistant from OLT
- Phase of signal is measured from first bit transmitted from OLT to last bit received by ONU
- Every time ONU transmits RTT is compared to expected value and EqD is updated

PON Protection

ONU

ONU N

Path 1

OLT

OLT

Protection Schemes

- ITU-T G.983.1 GPON Protocol specifies four protection architectures for PONs
- a) Simple feeder fiber architecture
- b) Feeder+OLT transceiver
- c) Feeder+Distribution+O LT+ONU Transceivers
- d) Hybrid protection

EPON vs GPON Physical Layer

	UNIT	Downstream (GPON)	Downstream (EPON)	Upstream (GPON)	Upstream (EPON)
Bit-rate	Gb/s	1.244/2.48	1	1.244/2.48	1
Wavelength (SF)	nm	1480-1500	1480-1500	1260-1360	1260-1360
Mean Tx Power Min	dBm	-4 A/+1 B/ +5 C	-7	-3 A/ -2 B/ +2 C	-4
Mean Tx Power MAX	dBm	+1 A/ +6 B/ +9 C	2	+2 A/ +3 B/ +7 C	-1
Splitting Ratio		<64	<32	—	—
Max reach	Km	20	20	—	_
Line coding	-	NRZ	NRZ	NRZ	NRZ
Rx Sensitivity	dBm	-25 A/ -25 B/ - 26 C	-27	-24 A/ -28 B/ - 29 C	-24
Tx On-Off (1 Gbps)	ns	—	—	13	512
Clock recovery /AGC (1 Gbps)	ns	 Downstrear		36 Upstrea	<400

Burst Mode Rx Decision Threshold set

TWEPP 2009 21-25 Sep. Paris -Optoelectronics and Links Session

P2MP Timing Parameters

Note 1. Sync time is 520ns (Receiver settling time + CDR lock time). Note 2. Tx Enable is the control signal of optical ON/OFF to ONU.

PON Protocol

- Synchronous delivery of a periodic trigger with clock rate 25ns, (T) field
- F field to protect the trigger field, (F) field
- Broadcast commands to ONUs, (D1) and (D2) fields
- Individually addressing of ONUs, (D1) and (D2) fields
- Arbitration of upstream channel to avoid collisions due to simultaneous transmissions from multiple ONUs, (R) field

Protocol Properties

- No destination addresses are required to be transmitted
- Easy resynchronization in case of loss of sync
- Simple algorithm for accessing the upstream channel
- Downstream available BW: 9.23 Mb/s/ONU
- Upstream available BW: 7.66 Mb/s/ONU

Upstream Frame

- Slave N1 receives an R character with its address and switches its laser ON
- IFG between successive emissions allows receiver to adopt between bursts
- Upstream contains 32 bytes of <5555> for CDR followed by two SFD, <D555>, bytes for frame alignment
- A 2 byte address field and data are following
- Channel arbitration is a logic built-in at the OLT
- Total BW 800Mb/s, 7.7 Mb/s are available per Slave node for pure data

Master Transmitter

24/09/2009

TWEPP 2009 21-25 Sep. Paris -Optoelectronics and Links Session

OLT Tx - Gear Box

BW Downstream

- To calculate the BW assigned to each ONU we need:
- A) To exclude the trigger, "F" field and "K" and "R" characters 590.76 Mb/s is available for data to all ONUs
- B) To exclude BW assigned to 8b/10b encoding
- The usable minimum downstream BW is 9.23Mb/s/ONU (for 640NUs @ 1.6Gb/s)

3. Transmitter Specifications (Vcc = 3.13V to 3.47V)

Electrical Characteristics						
Parameter**	Symbol••	Min.••	Typ.••	Max.••	Unit••	Remark••
Differential Input Voltage	Vin	04	-	16	Vn-n	LVPECL
Common-mode Input Voltage**	Vcm••	TBD		TBD	V••	LVPECL
Singled-ended Tx shutdown**	VSHDN••	2.0	-	-	V••	LVTTL
Singled-ended Tx turn on**	VSHDN**	-	-	0.8	V••	LVTTL
Tx Alarm High (Tx fail)**	Vtxf••	2.4	-	-	V••	LVTTL
Tx Alarm Low (Tx normal)**	Vtxf••	-	-	0.4	V••	LVTTL
Optical Characteristics						
Optical Output Power (E.O.L)**	Pout••	3.5	-	8	dBm••	-
Optical Output Power with TX	Pout off.	-	-	-39	dBm••	-
Optical Extinction Ratio**	ER••	9	-	-	dB••	-
Transmitter Eye Mask	_••		Refer to Fig. 1		-**	_••
Optical Wavelength**	•••	1480	-	1500	nm••	-
Relative Intensity Noise	RIN150MA•	-••	-••	-115••	dB/Hz••	_ ··
Spectral Width (rms)	Δλ	-	-	0.44	nm	-
Side Mode Suppression Ratio**	SMSR ···	30	-	-	dB••	-
Optical Return Loss Tolerance**	Torl••	-	-	15	dB••	-
Optical Return Loss of ODN••	_••	20	-	-	dB••	-
Transmitter Reflectance	Rt••	-	-	-10	dB••	-
Dispersion Penalty 1	DP	-	-	2.3	dB	-

24/ Note1. Measured with 27-1 PRBS at 1x10⁻¹² BER and 9 dB extinction ratio and the decision timing offset should be a minimum of

Slave Receiver

Barrel Shifter

TWEPP 2009 21-25 Sep. Paris -Optoelectronics and Links Session

Barrel Shifter

BW Upstream

- In our first implementation we give one timeslot of 1625ns to each ONU
- The overhead due to IFG, <5555>,
 <D555> and address field is 400ns
- That gives a BW utilization (taking into account the 8b/10) of 61.3%
- It corresponds to 7.66Mb/s/ONU (for 64 ONUs @ 800Mb/s)

ONU Rx Characteristics

4. Receiver Specifications (Vcc = 3.135V to 3.465V)

Electrical Characteristics						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Differential Data Output Swing	Vout	0.4	-	1.6	Vp-р	LVPECL
Data Output Rise/Fall Time	tr/tf	-	-	260	ps	-
Total Generated Receiver Jitter	JRX	-	-	247	ps	-
Optical Characteristics						
Average By Sensitivity 1		-	-	-25	dBm	PX-10,PX-20
Average KX Sensitivity	ROLNO	-	-	-26.5	dBm	PX-20 ⁺
Stressed Rx Sensitivity(@1.25Gb/s)	R _{st}			TBD	dBm	-
Maximum Input Power (Overload)	Pmax	-3	-	-	dBm	-
Optical Center Wavelength	• €	1480	-	1500	nm	-
SD Accort	SD 4	-	-	-25	dBm	LVTTL, PX-10, PX-20
SD Assert	50_A	-	-	-26.5	dBm	LVTTL, PX-20 ⁺
SD De-assert	SD_D	-44	-	-	dBm	LVTTL
SD Hysteresis	-	-	1	-	dB	-
S/X Endurance		-	-	-18	dB	1550nm ~ 1560nm
	-	-	-	4	dB	1625nm ~ 1655nm
Receiver reflectance	Tr	-	-	-12	dB	1480nm ~ 1500nm
		-	-	-20	dB	1550nm ~ 1560nm

Transceivers for PONs

- GPON has far more stringent requirements than EPON
- For this reason GPON components are in general more expensive than EPON
- OLT needs a 1490 nm laser (usually DFB-DBR)
- Burst Mode Receiver
- ONU needs 1310 nm F-P laser with burst mode laser drivers
- PIN diode or APD at 1490 nm

Coarse

WDM

BM ROSA

(APD)

OLT

1490 nm

DFB

Post-amp

AGC+

CDR

OLT Rx Characteristics

4. Receiver Specifications (Vcc = 3.13V to 3.47V)

Electrical Characteristics						
Parameter**	Symbol••	Min.••	Тур.••	Max.••	Unit••	Remark••
Differential Data Output Swing**	Vout••	0.4••	-••	1.6••	Vp-p**	LVPECL ··
Data Output Rise/Fall Time**	tr/tf••	_••	_ 	260••	ps••	-••
Signal Detect (SD) Voltage-Low**	V_{ol}	_••	_••	0.4••	V••	LVTTL••
Signal Detect (SD) Voltage-High••	V _{oh}	2.4••	_ ••	-••	V••	LVTTL
Signal Detect (SD) Timing**	T _A	_••	-••	100••	ns••	-
Signal Detect (SD) Thining	T _D	-	-	100	ns	-
AGC Reset**	_ ••		unnecessary•	•	_••	-••
Optical Characteristics						
Average Rx Sensitivity 1	RSENSE	-	-	-30	dBm	-
Maximum Input Power (Overload)	Pmax	-8.5	-	-	dBm	-
Optical Center Wavelength••	• •••	1260••	_ ••	1360••	nm••	_••
SD Assert	•••••	-	-	-30	dBm	LVTTL
SD De-assert**	SD_D••	-44••	-••	-••	dBm••	LVTTL
SD Hysteresis**	_ ••	-	2••	-••	dB••	-••
Receiver Settling Time (including Ton)**	T_rxst••	100	_ ••	350••	ns••	Refer to Fig. 2 and 3
Guard Time**	GT••	50	-••	-••	ns••	Refer to Fig. 3
Dynamic Range (loud/soft ratio)**	DR••	21.5••	_••	-••	dB••	Refer to Fig. 3••
S/X Endurance**		_••	_••	TBD••	dB••	1550nm ~ 1560nm••
5/A Endurance**		_••	_**	TBD••	dB••	1625nm~1655nm••

24/09/2

Note 1. Measured with PRBS of 27-1 at 1x10-12 BER and 9 dB extinction ratio. Transmitter should be on and driven with by

57

ONU Tx Characteristics

3. Transmitter Specifications (Vcc = 3.135V to 3.465V)

	Electrical Characteristics						
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Input Differential Impedance	Rin	-	100	-	••	-
	Differential Input Voltage	Vin	0.4	-	1.6	Vp-р	LVPECL
	Common-mode Input Voltage	Vcm	Vcc-1.49	Vcc-1.32	Vcc-Vin/4	V	LVPECL
	Differential Burst Enable	Vben	2.0	-	-	Vp-р	LVTTL
	Differential Burst Disable	Vben	-	-	0.8	Vp-p	LVTTL
	Rise Time / Fall Time	Tr/Tf	-	-	0.2	ns	20% - 80%
	Optical Characteristics						
	Optical Output Power	Pout	-0.5	-	4.5	dBm	-
	Optical Output Power with TX OFF	Pout_off	-	-	-45	dBm	-
	Optical Extinction Ratio	ER	9	-	-	dB	-
	Tansmitter Eye Mask Definition	-	F	Refer to Fig.	2	-	-
	Optical Wavelength	••	1260	-	1360	nm	-
	Optical Burst On/Off Time	Ton/Toff	-	-	100	ns	-
	Spectral Width (rms or WFHM)	Comply wi	ith IEEE 802.	3ah PX-10 a	nd PX-20 requ	irements	Refer to table 1 & Fig 1
	Side Mode Suppression Ratio	-	30	-	-	dB	PX-20U, PX-20U ⁺
	RIN ₁₅ OMA	-	-	-	-115	dB/Hz	PX-20U, PX-20U ⁺
	Optical Return Loss Tolerance	Torl			15	dB	-
	Total Jitter	-	-	-	128	ps	-
	T		-	-	-6	dB	PX-10
	ransmitter Reflectance @1310nm	Rt	-	-	-10	dB	PX-20, PX-20 ⁺
	Dispersion Departs 1	DD	-	-	2.8	dB	PX-10
24/09/2009	Dispersion Penalty '	UF	-	-	1.8	dB	PX-20, PX-20 ⁺

Shared PMA PLL

Figure 5-2: Shared PMA PLL Conceptual View

59

Module	Introduced Latency (ns)
GTX Tx	75
OLT Board	3.2
Fiber	5 ns/m
ONU Board	17.6
GTX Rx	Constant

OLT Tx Latency

ERI

TOTAL

PMA+Interface

25

75

ONU Rx Total Latency

Module	Introduced Latency (ns)
PMA + Interface	50
buffer bypass	25
Barrel Shifter	12.5
8b/10b decoder	12.5
FPGA Rx Interface	25
TOTAL	125.5

CERN

DFB seeded Injection Locked VCSELs, 1550 nm 2.5 Gb/s over 25 Km

