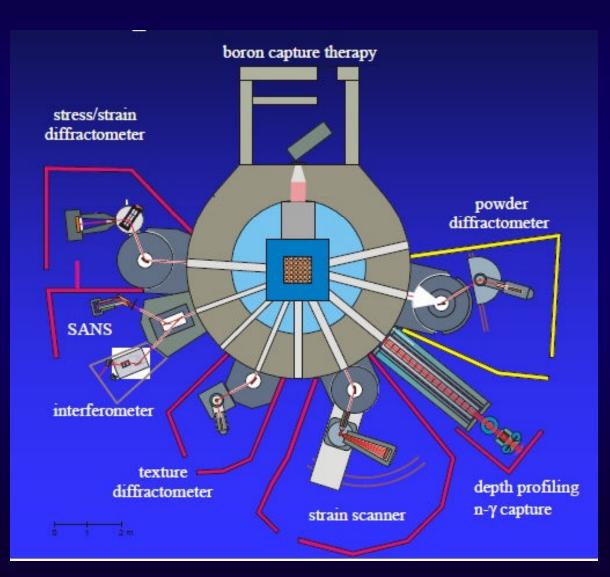


Overview of the BNCT neutron beam line facility in NRI Rez (Prague)

NRI = Nuclear research institute plc BNCT = boron neutron capture therapy

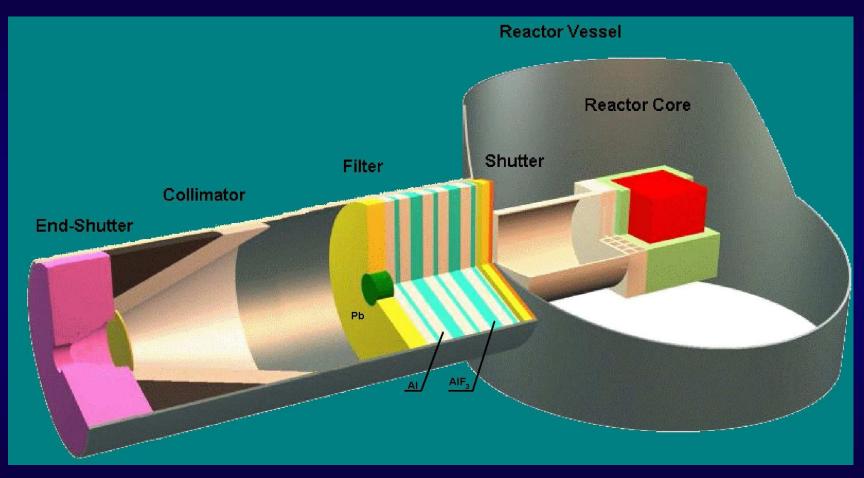
Most pictures taken from presentation of J.Burian/NRI – Milano09


Research Reactor LVR-15 (10MW)

- 36%
 enriched
 U235
- Light water with forced cooling
- Access allowed when reactor ON

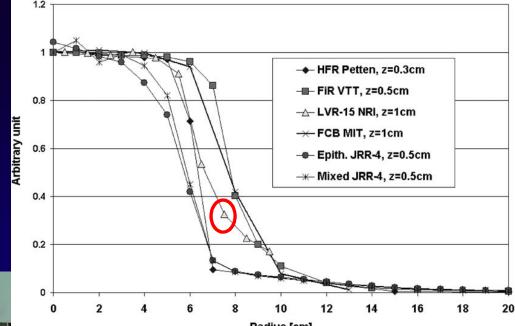
Experimental facilities using LVR-15

Approximate maximum fluxes


thermal neutron flux at the end of the horizontal beam tube	1x10 ⁹ n/cm ² s
maximum thermal neutron flux in the core	1.5x10 ¹⁴ n/cm ² s
maximum fast neutron flux in the core	3x10 ¹⁴ n/cm ² s
thermal neutron flux in irradiation channel in fuel	1.2x10 ¹⁴ n/cm ² s
thermal neutron flux in irradiation channel in reflector	9x10 ¹³ n/cm ² s

Material tests possible in the vertical irradiation channels Dedicated analysis labs available in NRI

2 Ge spectrometers and a portable one operated by NRI



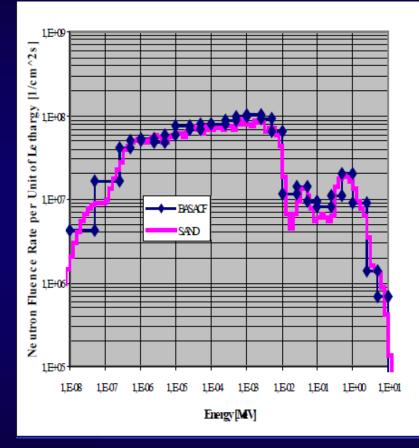
BNCT line with shutter

Online epithermal/fast neutron flux monitoring performed with fission chambers ($U^{235/238}$) inside the collimator

- Gamma component up to 0.5 Gy/h
- Control room dose rate ~ 2 uSv/h
- **Beam diameter 12cm**
- Access possible to the irradiation room when reactor is ON (shutter opens ~5mins)
- x-y Laser alignment available
- Cable feed through 4-5cm only, possibility to pass around the door (2 Fip cables max)
- **Desk space limited**
- Non-Czech citizens need special permit
- **RP** control possible outside of normal hours

Radius [cm]

61


61

8

6,4

BNCT spectrum WITH the Li6 filtering Thermal neutrons

• $\Phi_{\text{th}} = (1.12 \pm 0.05) \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$

•
$$\Phi_{epi} = (6.98 \pm 0.27) \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$$

$$\Phi_{\text{fast}} = (6.94 \pm 0.40) \times 10^7 \text{ cm}^{-2} \text{s}^{-1}$$

 $(dK_{fn}/dt)/\Phi_{epi}=1.45 \times 10^{-12} Gy cm^2$ (estimated 20%)

 $(dK_g/dt)/\Phi_{epi} = 7.88 \times 10^{-13} \text{ Gy cm}^2$ (estimated 20%)

We used 4cm polyethylene moderator (thermalization depth) WITHOUT Li⁶ filter Spectra to be received next week