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Introduction

@ We are modeling steady-state heat transfer from SC Rutherford
cable to an 1sothermal He |l bath (1.9 K).

@ We consider different insulations from all polyimide to epoxy
impregnated.

@ We profit of previous measurements done at CEA-Saclay [ 1] on
different insulation schemes.

@ We consider electrical SC properties (Nb-Ti, Nb3Sn) to evaluate
the temperature margin AT to find the maximum heat dramnable n
different working conditions.
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@ Heat flux 15 shared by two parallel paths (a & b).

1'1) Q, Vs. Q, depends on

: insulation porosity
1 2)Q, & Q, arenon linear

. 3)Q, has saturation level
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@ No He |l reaches the strands

@ Heat goes through solid
then to He ll

R insulation R Kapitza

(- Ep.+G.Fiber -
g3 p Epoxy.-He ll.
8

kg —} Q: Solid Conduction

Marco La China

conduction first,

He Il bath,
T,=1.9



Heat Transter Model (2/2)

@ Porous insulation details: Q.: solid Conduction
: R
— o *R,: Kapton conduction .
B T eRy: KapitzaKapton-Hell
lﬁo ity Qa: Solid Conduction :_ T, =T external wall
- I
g Ry, 7, Ree = Ry KapitzaCuHell
S £ <Ry, Hell conduction

*T,,=T internal bath
(He channel inlet)

Assumptions:

@ Negligible thermal boundary resistance at
the strand-insulation interface [2,3]

T Ro1
@ Parallel paths are decoupled @TICA %sz

@ Conductor and He Il bath are 1sothermal Ty \—
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Heat flux through Hell limited b /
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@ Porous insulations: -Large heat flux for small AT but Imited by
He Il channel saturations (determmed by channel dnmenslons)

-Limited heat flux for
large AT (bad Kapton
conduction)

@ Sealed insulations:
-Small heat flux for
small AT.

-Large heat flux for
large AT (no chan-
nel saturations)

@ Model:
lsothermal bath

& conductor

(may result in an
overestimation of
heat flux respect to
non 1sothermal model)
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y Comparison for Operating Conditions:
v Same or Specific

| . We consider two colls in a He Il bath (T,=1.9) :
| . Nb3Sn with sealed insulation

2. Nb-Ti with porous insulation

2. We \mpose the same eng- 2. We mpose J and B, specific
Ineering current density J,,, of two alternative designs for
and operative peak field B triplet upgrade (E. Todesco)
...not a realistic case... ...a realistic case...

3. We get the temperature margin AT=T_-T, we combine it with
the heat transfer correlations and we obtain the corresponding
heat flux
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Maximum Heat Flux for
Same B (37) and J_,,
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Maximum Heat Flux for Specific
| Conditions (Large Ap. High G Quads 11 1)

_________________________________________________________

Maximum Heat Drainable from
Inner Layer (one small face only)

@ Comparative study : 220 ‘ ‘ |
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Enhanced |nsulation Details

Dedicated He |l channels of finite size 1% layer 2" layer
with gap with gap
@ 3 layers with gaps

@ Overlap between | and 3™
@ All polyimide insulation

@ No special manufacturing or
additional cost

Thickness Width Gap
[um] [mm] [mm]
| st 37.5 | | 2
2" 67 2 2.5
S 37.5 | | 2
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Summary

@ For same B and J_,,, Nb3Sn colls made by Rutherford cables
can draw one order of magnitude more heat than Nb-Ti colls
thanks to :

+ Greater temperature margin

+ Thermal conductivity of epoxy+fiberglass higher than Kapton

@ For the same margin to critical surface (specific operating
conditions), Nb;Sn colls made by Rutherford cables can draw
three times more heat than Nb-Ti colls

...however...

...there 15 still a large potential to increase the dimension of the
cooling channels thus moving their saturation at higher heat fluxes:
this makes Nb-Ti solution still interesting.
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Desirable Initiatives

@ The heat transfer experimental data supporting this study have
been collected from literature.

@ There 15 a lack of experimental data on heat transfer to Helium |l
from complex structures as Rutherford cables and Nb;Sn coills.

@ Experimental activities to fill this void, validate more complex
predictive models (FEM 2D,3D) and alternative insulation
schemes are needed.
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@ Thermal boundary resistance at interfaces between different
materials (Kapitza):

We vse empirical fits g [W/m?] T [K],
+ Cu-He II: q=460(T,3%-T_,3%), [7]

v Kapton-He Il: q=47.43(Ty,* —Ty."). [8] venfied for small AT, we use it also for
epoxy

v Cu-epoxy: = 1300,+3600g (T, —Tgp), [2] consistent with [3]
@ Conduction in solids:
+ Kapton: K=4.638e-3*T.20.5678 [&] venfied for O.5<T<5K

w Epoxytfiberglass: K = 0.6 K +0.4*Kg 0. (Kgp # Kgyg from [9] consistent with [3]
and [10])

@ He Il thermal conductivity

We consider a fully developed Gorter-Mellink regime [4] (conservative hypotheses

[5])
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y Comparison of Equivalent Thermal =
v 4¥l Resistances in an Insulated Cable VIAE

10—

@ Bulk resistance of O. | mat. o o oo o omn s SSsam;
thick Kapton ~2 times |
larger than 0.2 mm thick ©

epoxyt+fiberglass s
e 107
@ Boundary resistance %
(Kapitza): *
10 3 —+— Kapitza Cu E
Kapton (¢ EP.-l-F.) ~6 f —— Kapitza Kapt.(& Ep+F) | ]
I —6— Kapt. (0.1 mm) ]
times larger than Cu ; —&— Ep.+Fglass 02mm) |

10 "+
i —eo— He Il ch. Enhanced

—eo— He ll ch. LHC ]
—e— He |l ch. best of CEA's |
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@ HE Il channel resistance: “w % w0 w0 0 10 1

-depends on Iinsulation QW]
Porg5lty (channel lengths -15 always smaller than Kapton and

and cross-areas) epoxy+fiberglass but 1s imited by

saturation
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