Search for the Decay Modes $B^{+} \rightarrow D^{+} K^{0}$ and $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{* 0}$ with the BaBar Experiment

Xavier Prudent

(Institut für Kern- und Teilchen Physik, TU-Dresden)
On behalf of the BaBar Collaboration

ICHEP 2010 - Paris

Measurement of γ angle in CKM triangle: Still challenging, large uncertainty Flagship analysis in BaBar

Measurement with $\mathrm{B}^{+} \rightarrow \widetilde{\mathrm{D}}^{0} \mathrm{~K}^{+}$:

$$
\begin{aligned}
& \text { Interference } \longleftarrow\left[\begin{array}{l}
\mathrm{B}^{+} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{+} \\
\mathrm{B}^{+} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{+}
\end{array}\right.
\end{aligned}
$$

Sensitivity on γ then driven by:

$$
r_{D^{0} K^{+}}=\frac{\left|A\left(B^{+} \rightarrow D^{0} K^{+}\right)\right|}{\left|A\left(B^{+} \rightarrow \overline{D^{0}} K^{+}\right)\right|}=\frac{\left|V_{c s} V_{u b}^{*}\right|}{\left|V_{u s} V_{c b}^{*}\right|} \times \frac{|\bar{C}+A|}{|\bar{T}+C|}
$$

Color-suppressed

\rightarrow Amplitudes must be under control

Motivations (2)

Annihilation diagram:

O Expected amplitude: $\mathrm{A} \sim\left(\sin \theta_{c}\right)^{5}$
O No hadronic annihilation decay seen so far:

$$
\text { BF }\left(\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}\right)<5 \times 10^{-6} @ 90 \% \text { C.L. , }
$$

[BaBar, 226x10 ${ }^{6}$ B $\overline{,}$, PRD 72,011102 (2005)]
O Ordinarily neglected in theoretical calculations
But...

Weak process may be enhanced by strong rescattering effect PRL 78, 3999 (1997)

O Branching ratio may reach non-negligible value

Negligibility of annihilation diagram must be confirmed

$$
D^{(*)+}
$$

B mesons from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}}$ with PEPII accelerator (SLAC), reconstructed with BaBar detector

4-vectors of decay daughters summed to build mother candidate and massconstrained

Main backgrounds:

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ quark anti-quark (quark $=u, \mathrm{~d}, \mathrm{c}, \mathrm{s}$)
$e^{+} e^{-} \rightarrow B^{0} \overline{B^{0}}$ and $B^{+} B^{-}$: generic B decays,

- B decays with similar final states (peaking background in signal region)

\longrightarrow	$\frac{\text { For } \mathrm{D}^{+}}{} \mathrm{K}^{0}$
	$\mathrm{~B}^{0} \rightarrow \mathrm{D}^{-} \rho^{+}\left(\rho^{+} \rightarrow \pi^{+} \pi^{0}\right)$
	$\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}^{0}} \mathrm{~K}^{0}$
	$\mathrm{~B}^{0} \rightarrow{\overline{D^{*}} \mathrm{~K}^{0}}$

$\longrightarrow{\text { For } \mathbf{D}^{+}}^{\underline{K^{* 0}}} \underline{\underline{D}}$
$\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \rho^{+}$
$\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \mathrm{K}^{*+}$
$\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \mathrm{a}_{1}{ }^{+}$

Selection of $\mathbf{B}^{+} \rightarrow \mathrm{D}^{+} \mathbf{K}^{(*) 0}$

Selections \rightarrow maximizing $S / \sqrt{S+B}$ with high statistics Monte-Carlo simulations Assume branching fraction of $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{(*) 0}=5 \times 10^{-6}$ (previous upper limit by BaBar)

- Tracks origin constrained to same vertexMass of D^{+}candidates
- Mass, energy, shower shape, momentum of π^{0} candidates
- Mass of $K_{s}{ }^{0}$ candidates
- Peaking background rejected with $\mathrm{K}_{\mathrm{s}}{ }^{0}$-related variables:
- Helicity angle $\theta^{\mathrm{Hel}}{ }_{\mathrm{Ks}} 1$
- Flight Angle $\alpha_{\text {Ks }}$

2

B vertex

- Mass of $K^{* 0}$
- Helicity angle of $K^{* 0} \rightarrow K \pi$ similar to
- B^{+}built by combining D^{+}and $\mathrm{K}^{(*) 0}$, constraining them to same origin vertex
- Angular distribution $\cos \left(\theta_{B}\right)$

Use kinematics of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \overline{\mathrm{BB}}$ for selection of B signal \quad SLAC-418, LBL-5379 (1993)

Beam-Energy Substituted Mass
$m_{E S}=\sqrt{E_{b e a m}^{*}-p_{B}^{* 2}}$

Energy Difference

$\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}$

Keep B candidates with $\Delta \mathrm{E}$ close to zero (yellow band)

Eventually keep only 1 B / event:
[D^{+}mass closest to PDG value] or [$\Delta \mathrm{E}$ closest to 0]

Overall efficiency on signal MC:
O $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}: 5-21 \%$
O $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{* 0}$: ~10 \%

Selection of $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{(*) 0}(3)$

Largest background from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}, \mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}$ (produce very high momentum mesons $\mathrm{D}^{+}, \mathrm{K}^{(*) 0}$)

Different event topologies

Described by shape variables: $\mathrm{L}_{0}, \mathrm{~L}_{2},\left|\cos \left(\theta_{\text {thrust }}\right)\right|$
(cf. backup slides for definition)
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \overline{\mathrm{qq}} \mathrm{MC}$ distributions checked with off-resonance data

Combined in a Fisher discriminant:

$F=a_{0}+a_{1} \cdot L_{0}+a_{2} \cdot L_{2}+a_{3} \cdot\left|\cos \left(\theta_{\text {thrust }}\right)\right|+a_{4} \cdot|\Delta t|$

Extraction of Number of Signal Events

2D maximum likelihood fit: $m_{E S} \times$ Fisher
$465 \times 10^{6} \mathrm{~B} \bar{B}$

Background yields
compatible with
expectations
Signal yield
compatible with 0

Decay mode	$N_{\text {sig }}$	$N_{B \bar{B}}$	$N_{\text {cont }}$	\mathcal{B}
$B^{+} \rightarrow D^{+} K^{0}$				
$K \pi \pi$		70 ± 27	2690 ± 57	$-4.2{ }_{-}^{2.4}{ }_{2}^{2.0}$
$K \pi \pi \pi^{0}$	$10{ }_{-}^{+10}$	111 ± 51	6516 ± 94	20 ± 20
$K_{S}^{0} \pi$	0.6 +5.3	20 ± 14	381 ± 23	0.7 ± 15
$K_{S}^{0} \pi \pi^{0}$	-6.7 ${ }_{-}^{+2.8}$	36 ± 22	1270 ± 41	$-14{ }_{-6.2}^{+9.2}$
$B^{+} \rightarrow D^{+} K^{* 0}$				
$K \pi \pi$	$-15.6{ }_{-}^{+8.7}$	463 ± 63	6338 ± 98	$-5.0{ }_{-2.1}^{+2.9}$
$K_{S}^{0} \pi$	$-11.4{ }_{-}^{+3.5}$	35 ± 15	547 ± 27	$-33{ }_{-}^{+10.2}$

Projections of $m_{\text {ES }}$ for Fisher >0 :

Fit projection, signal, $B \bar{B}, q \bar{q}$, peaking background

Uncertainties on Branching Ratio

Statistical unc.

Decay mode	$N_{\text {sig }}$	$N_{B \bar{B}} \quad N_{\text {cont }}$	\mathcal{B}
$B^{+} \rightarrow D^{+} K^{0}$			
$K \pi \pi$	$-11.9{ }_{-}^{+5.7}{ }_{5}^{6.6}$	$70 \pm 272690 \pm 57$	-4.2 ± 2.4
$K \pi \pi \pi^{0}$	$10 \pm{ }_{-}^{10}$	$111 \pm 516516 \pm 94$	20+20
$K_{S}^{0} \pi$	${ }_{0} 0.6+5.3$	$20 \pm 14 \quad 381 \pm 23$	$0.7{ }_{-15}^{+15}$ -13
$K_{S}^{0} \pi \pi^{0}$	-6.7 ${ }_{-}^{+}{ }_{-}^{4.5}$	$36 \pm 221270 \pm 41$	$-14{ }_{-6.2}^{+9.2}$
$B^{+} \rightarrow D^{+} K^{* 0}$			
$K \pi \pi$	$-15.6{ }_{-7.1}^{+8.7}$	$463 \pm 636338 \pm 98$	$-5.0{ }_{-2.1}^{+2.9}$
$K_{S}^{0} \pi$	${ }_{-11.4}^{+}+\begin{aligned} & \text { + } \\ & \text { 2. }\end{aligned}$	$35 \pm 15 \quad 547 \pm 27$	$\mathrm{Cl}^{-33}{ }_{-}^{+10.2}$

Systematic unc.

With offresonance data

	$B^{+} \rightarrow D^{+} K^{0}$				$B^{+} \rightarrow D^{+} K^{* 0}$	
	$K \pi \pi$	$K \pi \pi \pi^{0}$	$K_{S}^{0} \pi$	$K_{S}^{0} \pi \pi^{0}$	$K \pi \pi$	$K_{S}^{0} \pi$
PDF - MC 飞 Largest one	${ }_{-0.8}^{+0.8}$	${ }_{-3.4}^{+6.2}$	${ }_{-4.4}^{+5.3}$	${ }_{-8.8}^{+7.3}$	${ }_{-0.9}^{+0.6}$	${ }_{-3.6}^{+3.1}$
Data-MC PDF shapes:						
Continuum background	0.2	0.4	1.4	0.5	0.1	1.7
$B \bar{B}$ background	0.7	1.6	2.5	5.0	1.0	4.4
Signal	<0.05	9.2	5.6	0.9	0.9	3.1

From control sample in data
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$ $\bar{B}^{0} \rightarrow D^{+} \rho^{-}$

Efficiency error:

Reconstruction efficiency (MC)	0.1	0.6	<0.05	0.9	0.1	0.5
	0.2	0.8	<0.05	0.5	0.2	0.3
Data-MC	<0.05	0.5	0.2	0.2	<0.05	0.1
Peaking background	0.3	0.3	<0.05	0.4	<0.05	0.1
\mathcal{B} errors	${ }_{-1.3}^{+1.1}$	${ }_{-11.8}^{+11.3}$	${ }_{-9.3}^{+8.2}$	${ }_{-12.5}^{+9.0}$	${ }_{-1.8}^{+1.5}$	${ }_{-7.4}^{+6.4}$
Combined						

Upper Limits on Branching Ratio (BR)

O No signal observed in $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{(*) 0}$
O Combination of $B R$ measured with the different D^{+}modes:

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow D^{+} K^{0}\right) & =\left(-3.8_{-2.4}^{+2.5}\right) \times 10^{-6}, \\
\mathcal{B}\left(B^{+} \rightarrow D^{+} K^{* 0}\right) & =(-5.3 \pm 2.7) \times 10^{-6}
\end{aligned}
$$

O Upper limit set on BR using Bayesian approach
Likelihood $\mathcal{L}_{i}^{\text {final }}$ of BR for each decay mode "i": $\mathcal{L}_{\mathrm{i}}^{\text {final }}=\mathcal{L}_{\mathrm{i}}{ }^{*} \boldsymbol{G}_{\mathrm{i}}$
$\boldsymbol{G}_{\mathbf{i}}=$ Gaussian with width equal to systematic uncertainty
$\mathcal{L}_{\mathrm{i}}^{\text {final }}$ finally combined in one likelihood $\mathcal{L}^{\text {total }}$
Confidence Level measured by integrating $\mathcal{L}^{\text {total }}$ (flat prior for $B R \geq 0$)

$$
\begin{aligned}
& B R_{B \rightarrow D K}<2.9 \times 10^{-6} \text { at } 90 \% \text { C.L. } \\
& B R_{B \rightarrow D K^{*}}<3.0 \times 10^{-6} \text { at } 90 \% \text { C.L. }
\end{aligned}
$$

\rightarrow [hep-ex]arxiv:1005.0068, Submitted to Phys. Rev. D \leftarrow

Conclusion

O Measurement of $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{(*) 0}$ branching ratios of interest for

- CKM angle γ measurement
- constraining QCD models for annihilation diagrams

O Search with whole BaBar dataset $465 \times 10^{6} \mathrm{~B} \overline{\mathrm{~B}}$
O Uncertainty dominated by statistical uncertainty
O No signal observed

- Upper limit set on branching ratio with Bayesian statistics

$$
\begin{aligned}
B R_{B \rightarrow D K} & <2.9 \times 10^{-6} \text { at } 90 \% \text { C.L. } \\
B R_{B \rightarrow D K^{*}} & <3.0 \times 10^{-6} \text { at } 90 \% \text { C.L. }
\end{aligned}
$$

O Improvement of limit for $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}\left(5.5 \times 10^{-6}\right)$
First search for $\mathrm{B}^{+} \rightarrow \mathrm{D}^{+} \mathbf{K}^{* 0}$

O Strengthens hypothesis of negligible contributions from annihilation diagrams

Backup Slides

Definition of Event Shape Variables

The first variable is the cosine of the angle between the B thrust axis and the thrust axis of all the other reconstructed charged tracks and neutral energy deposits (rest of the event), where the thrust axis is defined as the direction that maximizes the sum of the longitudinal momenta of all the particles. The second and third variables are the event shape moments $L_{0}=\sum_{i} p_{i}$, and $L_{2}=\sum_{i} p_{i}\left|\cos \theta_{i}\right|^{2}$, where the index i runs over all tracks and energy deposits in the rest of the event; p_{i} is the momentum and θ_{i} is the angle with respect to the thrust axis of the B candidate. These three variables are calculated in the CM.

