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Abstract
The baryon axial vector current is computed at one-loop order

in heavy baryon chiral perturbation theory in the large−Nc limit,
where Nc is the number of colors. Loop graphs with octet and
decuplet intermediate states cancel to various orders in Nc as a con-
sequence of the large-Nc spin-flavor symmetry of QCD baryons. We
present a preliminary study of the convergence of the chiral expan-
sion with 1/Nc corrections in the case of gA in QCD.

1 Introduction

The nonrelativistic quark model has been a useful tool in the
study of hadrons. Baryons and mesons are described by quan-
tum mechanical wave functions for nonrelativistic constituent
quarks. The lowest lying baryons, the 81/2 and 103/2, are
three quark states with wave functions which are completely
antisymmetric in color, and completely symmetric in position
and spin-flavor.
The chiral perturbation theory exploits the symmetry of the
QCD Lagrangian under SU(3)L × SU(3)R × U(1)V trans-
formations of the three flavors of light quarks in the limit
mq → 0. Chiral symmetry is spontaneously broken by the
QCD vacuum to the vector subgroup SU(3)V × U(1)V , giv-
ing rise to an octet of Goldstone bosons. Physical observ-
ables can be expanded order by order in powers of p2/λ2

χ and

m2
π/Λ2

χ, where p is the meson momentum, mΠ is the mass of
the Goldstone boson, and Λχ is the scale of chiral symmetry
breaking. When chiral perturbation theory is extended to in-
clude baryons, it is convenient to introduce velocity-dependent
baryon fields, so that the expansion of the baryon chiral La-
grangian in powers of mq and 1/MB (where MB is the baryon
mass) is manifest [1,2]. This so-called heavy baryon chiral
perturbation theory was first applied to compute the chiral
logarithmic corrections to the baryon axial vector current for
baryon semileptonic decays due to meson loops [1,2]. While
these corrections are large when only octet baryon interme-
diate states are kept [1], the inclusion of decuplet baryon in-
termediate states yields sizable cancellations between oneloop
corrections [2]. This phenomenological observation can be rig-
orously explained in the context of the 1/Nc expansion. On
the other hand, the generalization of QCD from Nc = 3 to
Nc � 3 colors, known as the large-Nc limit, has also led
to remarkable insights into the understanding of the nonper-
turbative QCD dynamics of hadrons. In the large−Nc limit
the meson sector of QCD consists of a spectrum of narrow
resonances and meson-meson scattering amplitudes are sup-
pressed by powers of 1/

√
Nc [3]. The baryon sector of QCD,

on the contrary, is more subtle to analyze because in the large-
Nc limit an exact contracted SU(2Nf ) spin-flavor symmetry
(where Nf is the number of light quark flavors) emerges. This
symmetry can be used to classify large-Nc baryon states and
matrix elements. Applications of this formalism to the com-
putation of static properties of baryons range from masses,
couplings [3,4] to magnetic moments [5], to name but a few.

2 The chiral lagrangian for

baryons in the 1/Nc expansion

Lbaryon = iD0−Mh+Tr(Akλc)Akc 1

Nc
Tr

(
Ak 2I√

6

)
Ak+. . .

(1)
where

D0 = ∂01 + Tr(V0λc)T c (2)

Each term in Eq. (1) involves a baryon operator which can be
expressed as a polynomial in the SU(6) spin-flavor generators
[9]

Jk = q† σ
k

2
q, T c = q† λ

c

2
q, Gkc = q† σ

i

2

λa

2
q (3)

where q† and q are SU(6) operators that create and annihi-
late states in the fundamental representation of SU(6), and
σk and λc are the Pauli spin and Gell-Mann flavor matrices,
respectively. In Eqs. (1)−(3) the flavor indices run from one
to nine so the full meson nonet π, K, η, and η is considered.
The baryon operator Mhyperfine denotes the spin splittings
of the tower of baryon states with spins 1/2, . . . , Nc/2 in the
flavor representations. Furthermore, the vector and axial vec-
tor combinations of the meson fields,

V 0 =
1

2
(ξ∂0ξ† + ξ†∂0ξ),

(4)

Ak =
i

2
(ξ∇kξ† − ξ†∇kξ),

couple to baryon vector and axial vector currents, respectively.
Here ξ = exp[iΠ(x)/f ], where Π(x) stands for the nonet of

Goldstone boson fields (unless explicitly stated otherwise) and
f ≈ 93 MeV is the meson decay constant.
The QCD operators involved in Lbaryon in Eq. (1) have well-
defined 1/Nc expansions. Specifically, the baryon axial vector
current Akc is a spin-1 object, an octet under SU(3), and odd
under time reversal. Its 1/Nc expansion can be written as[4]

Akc = a1G
kc +

Nc∑

n=2,3

bn
1

Nn−1
c
Dkcn +

Nc∑

3,5

cn
1

Nn−1
c
Okcn , (5)

where the Dkcn are diagonal operators with nonzero matrix
elements only between states with the some spin, and the el-
ements Okcn are purely off-diagonal operators with nonzero
matrix elements only between states with diferent spin.

Dkc2 = JkT c, (6)

Okc3 = εijk{J i, Gjc}, (7)

Dkc3 = {Jk, {Jr, Grc}}, (8)

Okc3 = {J2, Gkc} − 1

2
{Jk, Jr, Grc}. (9)

Higher order terms can be obtained via Dkcn = {J2,Dkcn−2}
and Okcn = J2,Okcn−2 for n ≥ 4 the operators Okc2m (m =
1, 2, . . .) are forbidden in the expansion (5) because they are
even under time reversal. Furthermore, the unknown coeffi-
cients a1, bn, and cn in Eq. (5) have expansions in powers of
1/Nc and are order unity at leading order in the 1/Nc expan-
sion.
The matrix elements of the space components of Akc between
SU(6) symmetric states give the actual values of the axial
vector couplings. For the octet baryons, the axial vector cou-
plings are gA, as conventionally defined in baryon β−decay
experiments, with a normalization such that gA ≈ 1.27 and
gV = 1 for neutron decay.

3 Renormalization of the baryon

axial vector current

One of the earliest applications of Lagrangian (1) consisted
in the calculation of nonanalytic meson-loop corrections. The
renormalization of the baryon axial vector current is another
problem. Aspects of this problem have been discussed in the
framework of heavy baryon chiral perturbation theory, the
1/Nc expansion, or in a simultaneous expansion in chiral sym-
metry breaking and 1/Nc.
The baryon axial vector current Akc is renormalized by the
one-loop diagrams displayed in Fig. 1. These loop graphs
have a calculable dependence on the ratio ∆/mΠ, where
∆ ≡ M∆ − MN is the decuplet-octet mass difference and
mΠ is the meson mass.

Figure 1: One-loop corrections to the baryon axial vec-
tor current

The correction arising from the sum of the diagrams of Figs.
1(a)-1(c), containing the full dependence on the ratio ∆/mΠ,
was deriveda and reads

δAkc =
1

2

[
Aja,

[
Ajb, Akc

]]
Πab(1)

− 1

2
{Aja,

[
Akc,

[
M, Ajb

]]
}Πab(2)

+
1

6

([
Aja,

[[
M,

[
M, Ajb

]]
, Akc

]]

− 1

2

[[
M, Aja

]
,
[[
M, Ajb

]
, Akc

]])
Πab(3) + . . .

Here Πab
(n)

is a symmetric tensor which contains meson-loop

integrals with the exchange of a single meson: A meson of
flavor a is emitted and a meson of flavor b is reabsorbed. Πab

(n)
descomposes into flavor singlet, flavor 8 and flavor 27 repre-
sentations

Πab(n) = F
(n)
1 δab+F

(n)
8 dab8+F

(n)
27

[
δa8δb8 − 1

8
δab − 3

5
dab8d888

]
.

(10)

where

F
(n)
1 =

1

8

[
3F (n)(mπ, 0, µ) + 4F (n)(mK, 0, µ)

+ F (n)(mη, 0, µ)
]
,

F
(n)
8 =

2
√

3

5

[
3

2
F (n)(mπ, 0, µ)− F (n)(mK, 0, µ)

− 1

2
F (n)(mη, 0, µ)

]
,

F
(n)
27 =

1

3
F (n)(mπ, 0, µ)− 4

3
F (n)(mK, 0, µ)

+F (n)(mη, 0, µ).

In the degeneracy limit ∆
mΠ

= 0 of the general function

F (n)(mΠ,∆, µ), defined as

F (n)(mΠ,∆, µ) ≡ ∂nF (mΠ,∆, µ)

∂δn
(11)

4 Results and Conclusions

we have computed the renormalization of the baryon axial vec-
tor current in the framework of heavy baryon chiral perturba-
tion theory in the large-Nc limit. The analysis was performed
at one-loop order, where the correction to the baryon axial
vector current is given by an infinite series, each term rep-
resenting a complicated combination of commutators and/or
anticommutators of the baryon axial vector current Akc and
mass insertions M. Indeed, our final expressions referring to
the degeneracy limit explicitly demonstrate that the double
commutator AAA is of order Nc rather than of order N3

c ,
as one would naively expect. The following tables show the
numerical values of the gA axial vector coupling for various
semileptonic processes Nc dependence for the flavor singlet,
octet, and 27 contributions,

Singlet
BiBj ON0

c O( 1
Nc

) O( 1
N 2
c
) O( 1

N 3
c
) Total

np 0.2781 -0.1138 0.1402 -0.0256 0.2789
Σ+Λ 0.1302 -0.0396 0.0663 0.0111 0.168
Σ−Λ 0.0875 -0.0266 0.0446 0.0074 0.1129
Λp -0.1712 0.0837 -0.0855 0.0389 -0.134

Σ−n 0.0356 0.0014 0.0188 0.0239 0.0797
Ξ−Λ 0.0386 -0.0423 0.0179 -0.0483 -0.0339

Ξ−Σ0 0.1275 -0.0522 0.0643 -0.0117 0.127

Ξ0Σ+ 0.2442 -0.0998 0.1231 -0.0225 0.245

Octet
BiBj ON0

c O( 1
Nc

) O( 1
N 2
c
) O( 1

N 3
c
) Total

np -0.047 0.0163 -0.0045 -0.0044 -0.0396
Σ+Λ -0.0497 -0.0007 -0.0009 -0.005 -0.0564
Σ−Λ -0.027 -0.0004 -0.0005 -0.003 -0.0309
Λp -0.0331 -0.006 -0.0269 0.0111 -0.0549

Σ−n -0.0054 -0.0021 0.0037 0.0018 -0.002
Ξ−Λ 0.0087 -0.0097 0.0204 -0.02349 -0.004

Ξ−Σ0 0.0165 -0.0057 0.0016 0.00156 0.0139

Ξ0Σ+ 0.0485 -0.0168 0.0047 0.0045 0.0409

Flavor 27
BiBj ON0

c O( 1
Nc

) O( 1
N 2
c
) O( 1

N 3
c
) Total

np 0.0002 -0.0002 0.0014 0.0005 0.0019
Λp 0.0049 0.0023 -0.0046 0.002 0.0046

Ξ−Σ0 -0.0025 -0.0018 0.0025 -0.0005 -0.0023

Ξ0Σ+ -0.0076 -0.005 0.0075 -0.0015 -0.0066
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