Renormalization of the baryon axial vector current in large- N_{c}
María de los Angeles Hernández Ruíz ${ }^{1,2}$
(1) Instituto de Física, Universidad Autónoma de San Luis Potosí,

Av. Manuel Nava 6 Zona Universitaria 78290, San Luis Potosí SLP, México.
(2) Facultad de Ciencias Químicas, Universidad Autónoma de Zacatecas

Apartado Postal 585, 98060 Zacatecas, Zac. México

The baryon axial vector current is
The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large- N_{c} limit decuplet intermediate states cancel to variou graphs with octet and equence of the large- N_{c} spin-flavor symmetry orders in N_{c} as a conpresent a preliminary study of the convergence QCD baryons. W sion with $1 / N_{c}$ corrections in the case of g_{A} in QCD.

1 Introduction

The nonrelativistic quark model has been a useful tool in the study of hadrons. Baryons and mesons are described by quantum mechanical wave functions for nonrelativistic constituent quarks. The lowest lying baryons, the $8_{1 / 2}$ and $10_{3 / 2}$, are three quark states with wave functions which are completely antisymmetric in color, and completely symmetric in position and spin-flavor
The chiral perturbation theory exploits the symmetry of the QCD Lagrangian under $S U(3)_{L} \times S U(3)_{R} \times U(1)_{V}$ transformations of the three flavors of light quarks in the limit $m_{q} \rightarrow 0$. Chiral symmetry is spontaneously broken by the QCD vacuum to the vector subgroup $S U(3)_{V} \times U(1)_{V}$, giv ing rise to an octet of Goldstone bosons. Physical observables can be expanded order by order in powers of $p^{2} / \lambda_{\chi}^{2}$ and $m_{\pi}^{2} / \Lambda_{\chi}^{2}$, where p is the meson momentum, m_{Π} is the mass of the Goldstone boson, and Λ_{χ} is the scale of chiral symmetry breaking. When chiral perturbation theory is extended to include baryons, it is convenient to introduce velocity-dependent baryon fields, so that the expansion of the baryon chiral Lagrangian in powers of m_{q} and $1 / M_{B}$ (where M_{B} is the baryon mass) is manifest $[1,2]$. This so-called heavy baryon chiral perturbation theory was first applied to compute the chiral logarithmic corrections to the baryon axial vector current for baryon semileptonic decays due to meson loops [1,2]. While these corrections are large when only octet baryon intermediate states are kept [1], the inclusion of decuplet baryon intermediate states yields sizable cancellations between oneloop corrections [2]. This phenomenological observation can be rig orously explained in the context of the $1 / N_{c}$ expansion. On the other hand, the generalization of QCD from $N_{c}=3$ to $N c \gg 3$ colors, known as the large-Nc limit, has also led to remarkable insights into the understanding of the nonperturbative QCD dynamics of hadrons. In the large $-N_{c}$ limit the meson sector of QCD consists of a spectrum of narrow resonances and meson-meson scattering amplitudes are suppressed by powers of $1 / \sqrt{N_{c}}$ [3]. The baryon sector of QCD on the contrary, is more subtle to analyze because in the largeNc limit an exact contracted $S U\left(2 N_{f}\right)$ spin-flavor symmetry (where Nf is the number of light quark flavors) emerges. This symmetry can be used to classify large-Nc baryon states and matrix elements. Applications of this formalism to the computation of static properties of baryons range from masses couplings [3,4] to magnetic moments [5], to name but a few.

2 The chiral lagrangian for baryons in the $1 / N_{c}$ expansion

$\mathcal{L}_{\text {baryon }}=i \mathcal{D}^{0}-\mathcal{M}_{h}+\operatorname{Tr}\left(\mathcal{A}^{k} \lambda^{c}\right) A^{k c} \frac{1}{N_{c}} \operatorname{Tr}\left(\mathcal{A}^{k} \frac{2 I}{\sqrt{6}}\right) A^{k}+$ where

$$
\mathcal{D}^{0}=\partial^{0} 1+\operatorname{Tr}\left(\mathcal{V}^{0} \lambda^{c}\right) T^{s}
$$

$\mathcal{D}^{0}=\partial^{0} 1+\operatorname{Tr}\left(\mathcal{V}^{0} \lambda^{c}\right) T^{c}$
Each term in Eq. (1) involves a baryon operator which can be expressed as a polynomial in the $S U(6)$ spin-flavor generators [9]

$$
\begin{equation*}
J^{k}=q^{\dagger} \frac{\sigma^{k}}{2} q, \quad T^{c}=q^{\dagger} \frac{\lambda^{c}}{2} q, \quad G^{k c}=q^{\dagger} \frac{\sigma^{i}}{2} \frac{\lambda^{a}}{2} q \tag{3}
\end{equation*}
$$

where q^{\dagger} and q are $S U(6)$ operators that create and annihi late states in the fundamental representation of $S U(6)$, and σ^{k} and λ^{c} are the Pauli spin and Gell-Mann flavor matrices, respectively. In Eqs. (1)-(3) the flavor indices run from one to nine so the full meson nonet π, K, η, and η is considered. The baryon operator $\mathcal{M}_{\text {hyper fine }}$ denotes the spin splitting of the tower of baryon states with spins $1 / 2, \ldots, N_{c} / 2$ in the flavor representations. Furthermore, the vector and axial vec tor combinations of the meson fields,

$$
\begin{align*}
\mathcal{V}^{0} & =\frac{1}{2}\left(\xi \partial^{0} \xi^{\dagger}+\xi^{\dagger} \partial^{0} \xi\right), \tag{4}\\
\mathcal{A}^{k} & =\frac{i}{2}\left(\xi \nabla^{k} \xi^{\dagger}-\xi^{\dagger} \nabla^{k} \xi\right)
\end{align*}
$$

couple to baryon vector and axial vector currents, respectively Here $\xi=\exp [i \Pi(x) / f]$, where $\Pi(x)$ stands for the nonet of $\underset{{ }^{\circ} \text { R. Flores-Mendieta, C. P. Hofmann, E. Jenkins, and A. V. Manohar. Phys. Rev. D }}{ }$

Goldstone boson fields (unless explicitly stated otherwise) and $f \approx 93 \mathrm{MeV}$ is the meson decay constant.
The QCD operators involved in $\mathcal{L}_{\text {baryon }}$ in Eq. (1) have welldefined $1 / N c$ expansions. Specifically, the baryon axial vecto current $A^{k c}$ is a spin-1 object, an octet under $S U(3)$, and odd under time reversal. Its $1 / N c$ expansion can be written as 4

$$
\begin{equation*}
A^{k c}=a_{1} G^{k c}+\sum_{n=2,3}^{N_{c}} b_{n} \frac{1}{N_{c}^{n-1}} \mathcal{D}_{n}^{k c}+\sum_{3,5}^{N_{c}} c_{n} \frac{1}{N_{c}^{n-1}} \mathcal{O}_{n}^{k c} \tag{5}
\end{equation*}
$$

where the $\mathcal{D}_{n}^{k c}$ are diagonal operators with nonzero matrix elements only between states with the some spin, and the el ements $\mathcal{O}_{n}^{k c}$ are purely off-diagonal operators with nonzero matrix elements only between states with diferent spin.

$$
\begin{gather*}
\mathcal{D}_{2}^{k c}=J^{k} T^{c}, \tag{6}\\
\mathcal{O}_{3}^{k c}=\epsilon^{i j k}\left\{J^{i}, G^{j c}\right\}, \tag{7}\\
\mathcal{D}_{3}^{k c}=\left\{J^{k},\left\{J^{r}, G^{r c}\right\}\right\}, \tag{8}\\
\mathcal{O}_{3}^{k c}=\left\{J^{2}, G^{k c}\right\}-\frac{1}{2}\left\{J^{k}, J^{r}, G^{r c}\right\}
\end{gather*}
$$

Higher order terms can be obtained via $\mathcal{D}_{n}^{k c}=\left\{J^{2}, \mathcal{D}_{n-2}^{k c}\right\}$ and $\mathcal{O}_{n}^{k c}=J^{2}, \mathcal{O}_{n-2}^{k c}$ for $n \geq 4$ the operators $\mathcal{O}_{2 m}^{k c}(m=$ $1,2, \ldots$) are forbidden in the expansion (5) because they are even under time reversal. Furthermore, the unknown coefficients a_{1}, b_{n}, and c_{n} in Eq. (5) have expansions in powers of $1 / N_{c}$ and are order unity at leading order in the $1 / N_{c}$ expansion
The matrix elements of the space components of $A^{k c}$ between $S U(6)$ symmetric states give the actual values of the axial vector couplings. For the octet baryons, the axial vector couplings are g_{A}, as conventionally defined in baryon β-decay experiments, with a normalization such that $g_{A} \approx 1.27$ and $g_{V}=1$ for neutron decay.

3 Renormalization of the baryon axial vector current

One of the earliest applications of Lagrangian (1) consisted in the calculation of nonanalytic meson-loop corrections. The renormalization of the baryon axial vector current is another problem. Aspects of this problem have been discussed in the framework of heavy baryon chiral perturbation theory, the $1 / N_{c}$ expansion, or in a simultaneous expansion in chiral sym metry breaking and $1 / N_{c}$
The baryon axial vector current $A^{k c}$ is renormalized by the one-loop diagrams displayed in Fig. 1. These loop graphs have a calculable dependence on the ratio Δ / m_{Π}, where $\Delta \equiv M_{\Delta}-M_{N}$ is the decuplet-octet mass difference and m_{Π} is the meson mass.

(d)

Figure 1: One-loop corrections to the baryon axial vector current
The correction arising from the sum of the diagrams of Figs 1 (a)- 1 (c), containing the full dependence on the ratio Δ / m_{Π} was derived ${ }^{a}$ and reads

$$
\begin{aligned}
\delta A^{k c} & =\frac{1}{2}\left[A^{j a},\left[A^{j b}, A^{k c}\right]\right] \Pi_{(1)}^{a b} \\
& -\frac{1}{2}\left\{A^{j a},\left[A^{k c},\left[\mathcal{M}, A^{j b}\right]\right]\right\} \Pi_{(2)}^{a b} \\
& +\frac{1}{6}\left(\left[A^{j a},\left[\left[\mathcal{M},\left[\mathcal{M}, A^{j b}\right]\right], A^{k c}\right]\right]\right. \\
& \left.-\frac{1}{2}\left[\left[\mathcal{M}, A^{j a}\right],\left[\left[\mathcal{M}, A^{j b}\right], A^{k c}\right]\right]\right) \Pi_{(3)}^{a b}+
\end{aligned}
$$

Here $\Pi_{(n)}^{a b}$ is a symmetric tensor which contains meson-loop integrals with the exchange of a single meson: A meson of flavor a is emitted and a meson of flavor b is reabsorbed. $\Pi_{(n)}^{a b}$ descomposes into flavor singlet, flavor $\mathbf{8}$ and flavor $\mathbf{2 7}$ representations
$\Pi_{(n)}^{a b}=F_{\mathbf{1}}^{(n)} \delta^{a b}+F_{\mathbf{8}}^{(n)} d^{a b 8}+F_{27}^{(n)}\left[\delta^{a 8} \delta^{b 8}-\frac{1}{8} \delta^{a b}-\frac{3}{5} d^{a b 8} d^{888}\right]$
where

$$
\begin{aligned}
F_{\mathbf{1}}^{(n)}= & \frac{1}{8}\left[3 F^{(n)}\left(m_{\pi}, 0, \mu\right)+4 F^{(n)}\left(m_{K}, 0, \mu\right)\right. \\
& \left.+F^{(n)}\left(m_{\eta}, 0, \mu\right)\right], \\
F_{\mathbf{8}}^{(n)}= & \frac{2 \sqrt{3}}{5}\left[\frac{3}{2} F^{(n)}\left(m_{\pi}, 0, \mu\right)-F^{(n)}\left(m_{K}, 0, \mu\right)\right. \\
& \left.-\frac{1}{2} F^{(n)}\left(m_{\eta}, 0, \mu\right)\right], \\
F_{27}^{(n)}= & \frac{1}{3} F^{(n)}\left(m_{\pi}, 0, \mu\right)-\frac{4}{3} F^{(n)}\left(m_{K}, 0, \mu\right) \\
& +F^{(n)}\left(m_{\eta}, 0, \mu\right) .
\end{aligned}
$$

In the degeneracy limit $\frac{\Delta}{m_{\Pi}}=0$ of the general function $F^{(n)}\left(m_{\Pi}, \Delta, \mu\right)$, defined as

$$
\begin{equation*}
F^{(n)}\left(m_{\Pi}, \Delta, \mu\right) \equiv \frac{\partial^{n} F\left(m_{\Pi}, \Delta, \mu\right)}{\partial \delta^{n}} \tag{11}
\end{equation*}
$$

4 Results and Conclusions

we have computed the renormalization of the baryon axial vec tor current in the framework of heavy baryon chiral perturba tion theory in the large-Nc limit. The analysis was performed at one-loop order, where the correction to the baryon axial vector current is given by an infinite series, each term representing a complicated combination of commutators and/or
 anticomilator 1 mass insertions \mathcal{M}. Indeed, our final expressions referring t the degeneracy limit explicitly demonstrate that the double commutator $A A A$ is of order N_{c} rather than of order N_{c}^{3} as one would naively expect. The following tables show the numerical values of the g_{A} axial vector coupling for various semileptonic processes Nc dependence for the flavor singlet, octet, and 27 contributions,

Singlet					
$B_{i} B_{j}$	$\mathcal{O} N_{c}^{0}$	$\mathcal{O}\left(\frac{1}{N_{c}}\right)$	$\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)$	$\mathcal{O}\left(\frac{1}{N_{c}^{3}}\right)$	Total
$n p$	0.2781	-0.1138	0.1402	-0.0256	0.2789
$\Sigma^{+} \Lambda$	0.1302	-0.0396	0.0663	0.0111	0.168
$\Sigma^{-} \Lambda$	0.0875	-0.0266	0.0446	0.0074	0.1129
Λp	-0.1712	0.0837	-0.0855	0.0389	-0.134
$\Sigma^{-} n$	0.0356	0.0014	0.0188	0.0239	0.0797
$\Xi^{-} \Lambda$	0.0386	-0.0423	0.0179	-0.0483	-0.0339
$\Xi^{-} \Sigma^{0}$	0.1275	-0.0522	0.0643	-0.0117	0.127
$\Xi^{0} \Sigma^{+}$	0.2442	-0.0998	0.1231	-0.0225	0.245
$B_{i} B_{j}$	$\mathcal{O} N_{c}^{0}$	$\mathcal{O}\left(\frac{1}{N_{c}}\right)$	$\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)$	$\mathcal{O}\left(\frac{1}{N_{c}^{3}}\right)$	Total
$n p$	-0.047	0.0163	-0.0045	-0.0044	-0.0396
$\Sigma^{+} \Lambda$	-0.0497	-0.0007	-0.0009	-0.005	-0.0564
$\Sigma^{-} \Lambda$	-0.027	-0.0004	-0.0005	-0.003	-0.0309
Λp	-0.0331	-0.006	-0.0269	0.0111	-0.0549
$\Sigma^{-} n$	-0.0054	-0.0021	0.0037	0.0018	-0.002
$\Xi^{-} \Lambda$	0.0087	-0.0097	0.0204	-0.02349	-0.004
$\Xi^{-} \Sigma^{0}$	0.0165	-0.0057	0.0016	0.00156	0.0139
$\Xi^{0} \Sigma^{+}$	0.0485	-0.0168	0.0047	0.0045	0.0409

Flavor 27					
$B_{i} B_{j}$	$\mathcal{O} N_{c}^{0}$	$\mathcal{O}\left(\frac{1}{N_{c}}\right)$	$\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)$	$\mathcal{O}\left(\frac{1}{N_{c}^{3}}\right)$	Total
$n p$	0.0002	-0.0002	0.0014	0.0005	0.0019
Λp	0.0049	0.0023	-0.0046	0.002	0.0046
$\Xi^{-} \Sigma^{0}$	-0.0025	-0.0018	0.0025	-0.0005	-0.0023
$\Xi^{0} \Sigma^{+}$	-0.0076	-0.005	0.0075	-0.0015	-0.0066

Acknowledgments
The author would like to express their gratitude to Local Or ganizing Committee also acknowledge support.

References

[1] Elizabeth Jenkins and A. V. Manohar, Phys. Lett. B 255 558 (1991).
[2] Elizabeth Jenkins and A. V. Manohar, Phys. Lett. B 259 353 (1991).
[3] Rubén Flores-Mendieta, E. Jenkins y A. V. Manohar Phys. Rev. D 58, 094028 (1998).
[4] Rubén Flores-Mendieta and C. Hofmann, Phys. Rev. D 74, 094001 (2006).
[5] Rubén Flores-Mendieta, Phys. Rev. D 80, 094014 (2009).

