

Search for scalar bottom quarks and third generation leptoquarks in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

On behalf of the DØ collaboration, Cécile Deterre (CEA)

arXiv:1005.2222v2 (submitted to Phys. Lett. B)

Search for:

- Leptoquarks, predicted by GUTs and composite models. Charge 1/3 scalar leptoquarks LQ₃: $LQ_3 \rightarrow v_{\tau}b$ with a branching fraction B, $LQ_3 \rightarrow \tau t$ with a branching fraction 1-B.
- Scalar bottom quarks, mixtures of \tilde{q}_R, \tilde{q}_I . Assuming, in the MSSM: $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^\circ$ only.

• We look for:
$$p\bar{p} \rightarrow \tilde{b}_{1}\bar{b}_{1}\bar{b}_{1} \rightarrow b\tilde{\chi}_{1}\bar{b}\tilde{\chi}_{1}^{0}$$

 $p\bar{p} \rightarrow LQ_{3}\overline{LQ}_{3} \rightarrow b\bar{b}\nu\bar{\nu}$

Fig. 2: E_{τ}^{mis} distributions before (left) and after (right) b quark identification.

Systematics

Main systematics come from the uncertainties on the integrated luminosity (6%), the jet energy scale (2-7%), b-tagging (5-17%), theoretical cross-sections for SM processes (6-20%), and the contribution from multijet background (25%).

B-tagging

Signal signature: 2 high p₁ b-jets + E₁^{mis}

Backgrounds

• with real E_{τ}^{mis} : leptonic decays of W/Z+jets with misidentified leptons,

evaluated from MC and normalized with a W enriched sample.

instrumental: multijet processes with E_τ^{mis} arising from

mismeasurements, evaluated from data using a QCD dominated sample.

Event selection

- 2 or 3 jets with $p_{\tau} > 20$ GeV, azimuthal angle (jet, jet) < 165°
- veto on events with isolated electrons, muons or taus
- E_{τ}^{mis} > 40 GeV, high E_{τ}^{mis} significance and \vec{E}_{τ}^{T} not colinear with jets
- cut on the azimuthal distance between \vec{E}_{τ}^{mis} and the missing track transverse momentum \vec{p}_{τ}^{m}

Use reconstruction of displaced secondary vertices and decay length to separate light and heavy-flavour jets.

At DØ, b-tagging implemented with a neural network: typical efficiency of 55% for a fake rate of 1%.

- at least 2 b-tagged jets (one tight, one loose)
- final selections: cuts on E_T^{mis} , p_T^{jet1} , $H_T = \sum p_T$ and $X_{jj} = (p_T^{jet1} + p_T^{jet2})/H_T$ depending on $m_{LQ_{2}}$ and $m_{\tilde{b}_{1}}$.

Process	$X_{ii} > 0.75$	$X_{ii} > 0.9$
	$p_T^{\text{jet1}} > 20 \text{ GeV}$	$p_T^{\text{jet1}} > 50 \text{ GeV}$
	$E_T > 40 \text{ GeV}$	$E_T > 150 \text{ GeV}$
	$H_T > 60 \mathrm{GeV}$	$H_T > 220 \text{ GeV}$
Diboson	31	0.3
$W(\rightarrow l\nu) + \text{light jets}$	105	0.5
$Wc\bar{c}, Wb\bar{b}$	261	1.9
$Z(\rightarrow ll) + \text{light jets}$	8	0
$Zcar{c},Zbar{b}$	217	1.9
Тор	190	2.2
MĴ	157	0
Total background	971 ± 152	6.9 ± 1.7
# data events	901	7
Signal (acceptance, %)		
$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (240, 0) \text{ GeV}$	-	$10.5 \pm 1.9 \ (2.8)$
$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (130, 85) \text{ GeV}$	$481 \pm 66 \ (2.7)$	-

100 150 50 200 250 **Bottom Squark Mass (GeV)**

Run II

(b)

Fig. 4: excluded region in the plane of the bottom squark vs neutralino mass.

Table 1: Examples of observed and predicted yields after selection.

200 250 300 Leptoquark Mass (GeV)

Fig. 3: 95% CL upper limits on the cross section as a function of m_{10} .

Limits and conclusion

- Number of events observed in 5.2 fb⁻¹ data sample consistent with the predicted number of events from SM processes (Table 1).
- Limits are computed as a function of the leptoquark mass (Fig. 3).

The limits set are: $m_{1,03} > 247$ GeV for B=1, and 234 GeV if the couplings for $LQ_3 \rightarrow v_{\tau}b$ and $LQ_3 \rightarrow \tau t$ are equal.

- Fig. 4 shows the excluded region in the plane of the bottom squark versus neutralino mass.
- For a massless neutralino, the limit is: $m_{\tilde{b}} > 247$ GeV.
- These limits significantly extend previous results and are the best to date.