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OUTLINE
• Introduction

• Soft-Collinear Effective Theory

• Photon production cross section

•NNLL resummation for at large pT photon production

• Resummation by RG evolution

•Numerical results and comparison to Tevatron data

•NNLL resummation for W and Z production
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SOFT-COLLINEAR EFFECTIVE THEORY

• EFTs split physics into high- and low-energy part. In 
collider processes, we have an interplay of three 
momentum regions
• Hard

• Collinear

• Soft

•Correspondingly, EFT for such processes has two low-
energy modes:
• Collinear fields describing the energetic partons propagating 

in a given direction, and

• soft fields which mediate long range interactions among 
them.

}  high-energy

} low-energy part

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002
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RESUMMATIONS WITH SCET
• EFT provides an elegant framework to factorize contributions 

associated with different scales.

• Terms enhanced by large log’s of scale ratios are resummed 
by RG evolution

• By now, many applications of SCET to collider processes. 
Resummations in many cases up to N3LL:

• thrust distribution in e+e− 

• Drell-Yan rapidity dist.

• Drell-Yan, low pT

• inclusive Higgs production

• ...

Idilbi, Ji, Ma and Yuan ‘06 ; 
Ahrens, TB, Neubert, Yang ’08, update for 
ICHEP, see M. Neubert’s talk

TB, Neubert, Xu ‘07

TB, Schwartz ’08; 
Abbate et al. ’10

Gao, Li, Liu ’05; Idilbi, Ji, Yuan ’05;
Petriello, Sonny ‘09;  
TB, Neubert to appear Monday

all of these involve two directions of large energy flow
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N-JET PROCESSES
• Important progress in past year towards higher-log 

resummation of processes with large energy flow in 
several directions.

• All-order constraints on the anomalous dimensions 
from soft-collinear factorization, factorization in 
collinear limit, non-abelian exponentiation.

•General result for hard anomalous dimensions 
relevant for NNLL of n-jet processes

•massless: determined by constraints

•massive: two-loop computation of three-particle 
correlations

TB, Neubert ’09; Gardi, Magnea ’09 + Dixon ’09

Ferroglia, Neubert, Pecjak, Yang ’09

explains two-loop results of Aybat, Dixon and Sterman ’06
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PHOTON PRODUCTION  pp→ γ + X AT LARGE pT 

• First SCET calculation of a physical cross section with 
energetic particles in three directions.

• Perform NNLL resummation of αsnlog2n(MX/pT) 
corrections arising for at large pT.

•NLL was known Laenen et al. ’98, Catani et al. ’98, Kidonakis and Owens ’99

• In the meantime we have extended the result also to 
W± and Z production TB, Lorentzen, Schwartz, to appear

•Other examples involving multiple directions

• top-production Ahrens, et al. ’10 

• EW Sudakov resummation Chiu, et al. ’08, ’09

TB, M. Schwartz 0911.0681
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PHOTON PRODUCTION MECHANISMS
•Direct production

• sensitive to gluon PDF

• dominates fragmentation very at 
high pT

• perform NNLL resummation for 
this part match to NLO (own 
code for inclusive case; JetPhox for 
isolation)

• Fragmentation

• needs non-perturbative 
fragmentation function

• can be suppressed by putting 
isolation cone around γ
• included in NLO (Jetphox)

p̄p p̄p

γ γ
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• Have derived factorization theorem for prompt photon 
production at large

• (there are different partonic channels, with different H, J, S 
and f’s)

FACTORIZATION THEOREM AT LARGE PT

p

X

γ

p

pT �MX

d2
σ

dydpT
= H ⊗ J ⊗ S ⊗ f1 ⊗ f2
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HARD, JET AND SOFT FUNCTIONS

• Hard function is square of on-shell qg→qγ amplitude. Ellis et al. ’83, Arnold and Reno 
’89

• Jet functions are quark and gluon propagators in light-cone gauge.

• Soft function is matrix element of Wilson lines Yi from 0 ... ∞ along the 
beam and jet directions.

X X X X X X

X X X X X X

Figure 2: Diagrams contributing to the gluon jet function at NLO. The usual gluon self-energy
contributions are represented by the first graph. In the remaining diagrams gluons are emitted
from one of the Wilson lines, which are denoted by crosses.

The only place where the gluon jet function has appeared previously is in the analysis of
quarkonium production [40, 41, 42]. In [42], its one-loop anomalous dimension was calculated.
Here, we will compute the full order αs gluon jet function and derive its anomalous dimension
to order α3

s, although for NNLL resummation we only need the α2
s result.

The gluon jet function is defined by

tr 〈0| Aa
J

µ
⊥(x)Ab

J
ν

⊥(0) |0〉 = (−gµν
⊥ ) δab g2

s

∫
d4p

(2π)3
θ(p0) Jg(p

2) e−ipx . (80)

The strong coupling constant gs on the right-hand side is the bare coupling; the collinear
gluon fields were defined in Eq. (24). These collinear gluon operators only have non-vanishing
matrix elements for intermediate collinear states. Thus, this jet function can be thought of as
the result of integrating out the collinear modes at the scale µj. Equivalently, we can extract
the jet function from the imaginary part of the time-ordered product of collinear fields

1

π
Im

[
i

∫
d4x eipx〈0|T

{
Aa

J
µ
⊥(x)Ab

J
ν

⊥(0)
}
|0〉

]
= (−gµν

⊥ ) δab g2
s Jg(p

2) . (81)

This second definition shows that the jet function is given by the imaginary part of the
Feynman propagator in light-cone gauge, since in this gauge the Wilson lines in Eq. (24) are
absent.

The relevant diagrams in SCET are shown in Figure 2. In Feynman gauge all of the graphs
in the bottom row vanish. The first graph contributes to the wavefunction renormalization.
Since the collinear sector of SCET is equivalent to full QCD, this graph can be found in
textbooks. In units of the tree-level result, the graph gives

Ia =
αs

4π

(
µ2

−p2

)ε [(
5

3
CA −

4

3
TFnf

)
1

ε
+

31

9
CA −

20

9
TF nf

]
. (82)

The second and third diagrams have been computed in [56] and [57] in Feynman gauge. They
give

Ib = Ic =
αs

4π

(
µ2

−p2

)ε

CA

[
2

ε2
+

1

ε
+ 2 −

π2

6

]
. (83)
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Figure 1: Two-loop diagrams contributing to the jet function in QCD. Gluons emitted from the
crossed circles originate from the Wilson lines. Not shown are additional diagrams resulting from
mirror images in which the two external points are exchanged. The first diagram is the full fermion
two-point function, not just the one-particle irreducible part.

2.1 Evaluation of the two-loop diagrams
We first discuss the evaluation of the bare quantity jbare(Q2) and later perform its renormalization.
Let us begin by quoting the result for the one-loop master integral

∫
ddk

(−1)−a−b−c
(
k2 + i0

)a [(k + p)2 + i0
]b (n̄ · k)c

= iπ
d
2
(
−p2 − i0

) d
2−a−b (n̄ · p)−c J(a, b, c) , (8)

with

J(a, b, c) =
Γ(d2 − b) Γ(

d
2 − a − c) Γ(a + b −

d
2 )

Γ(a) Γ(b) Γ(d − a − b − c)
. (9)

At two-loop order, the most general integral we need is (omitting the “+i0” terms for brevity)
∫
ddk
∫
ddl

(−1)−a1−a2−a3−b1−b2−b3−c1−c2
(
k2
)a1 (l2

)a2 [(k − l)2
]a3 [(k + p)2

]b1 [(l + p)2
]b2 [(k + l + p)2

]b3 (n̄ · k)c1 (n̄ · l)c2

= −πd
(
−p2
)d−a1−a2−a3−b1−b2−b3 (n̄ · p)−c1−c2 J(a1, a2, a3, b1, b2, b3, c1, c2) . (10)

We use the same standard reduction techniques as in the two-loop calculation of the soft function [2]
to express all integrals we need for the evaluation of the diagrams in Figure 1 in terms of four master
integrals Mn. Introducing the dimensional regulator ε = 2 − d/2, we obtain

M1 = J(1, 1, 0, 0, 0, 1, 0, 0) =
Γ3(1 − ε) Γ(2ε − 1)
Γ(3 − 3ε)

,

3

n1n1

n2n2

nJ

nJ

Figure 1: Diagrams contributing to the soft function at NLO.

4.2 Soft functions

We consider the soft functions next. The Lagrangian of the soft sector of SCET is identical
to the standard QCD Lagrangian, so the calculation of the soft matrix element is the same as
in QCD. They are determined by matrix elements of time-ordered products of three Wilson
lines. Rewriting Eq. (47), for the two channels,

1

Nc
〈0|Tr T̄

[
(Y †

1 YJta Y †
J Y2)(x−)

]
T

[
(Y †

2 YJtaY †
J Y1)(0)

]
|0〉 =

∫ ∞

0

dk+ e−ik+(n̄J ·x)/2 Sqq̄(k+) ,

1

Nc
〈0|Tr T̄

[
(Y †

1 Y2t
a Y †

2 YJ)(x−)
]

T

[
(Y †

J Y2t
aY †

2 Y1)(0)
]
|0〉 =

∫ ∞

0

dk+ e−ik+(n̄J ·x)/2 Sqg(k+) .

The soft functions for the qq̄ and qg channels differ only by which representation of SU(3)

is associated with which direction. In particular, the position xµ
− = (n̄J ·x)

nµ
J

2 at which they
are evaluated points in the direction of the adjoint in the qq̄ → gγ case and a triplet (or
anti-triplet) in the qg → qγ case.

In dimensional regularization the virtual graphs contributing to this soft function vanish,
so we are left with real emission diagrams. These can be drawn as cuts through diagrams
with a gluon being exchanged between any Wilson line at 0 and any other Wilson line at x,

as shown in Figure 1. The soft (Eikonal) Feynman rules give a factor of nµ
i

(q·ni)
for the emission

from leg i, so in particular graphs involving emission and absorption into the same leg vanish.
As indicated by the one-dimensional Fourier transforms in Eq. (64), the x− dependence means
we only need the dependence on the component of soft radiation backward to the direction of
the jet.

The non-vanishing diagrams for the qq̄ → gγ case give

Sqq̄(k) = 2 g2
sµ

2ε

∫
ddq

(2π)d−1
δ(q2)θ(q0)δ(k − nJ · q)

×
[(

CF −
1

2
CA

)
n1 ·n2

(n1 ·q)(n2 ·q)
+

1

2
CA

nJ ·n1

(nJ ·q)(n1 ·q)
+

1

2
CA

nJ ·n2

(nJ ·q)(n2 ·q)

]
, (64)

and for the qg → qγ channel
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Hard function Jet function Soft function

Sq̄q(k+) =
1

Nc

�

Xs

���
�
Xs

���T
�
Y †

1 (0) YJ(0)ta Y †
J (0)Y2(0)

� ��� 0
����

2
(2π)δ(nJ · pXs − k+)
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RESUMMATION BY RG EVOLUTION

• Evaluate each part at its characteristic scale, evolve to 
common scale:

0

µ2

µ2
f

PDFs

pT

Soft functionJet functionHard func.

mX

m2
X/pT

H

J

S

fi(x1)fj(x2)
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• Have analytic solution for the RGs of H, J and S. TB and Neubert ’06

• Using RG invariance and known results, we are able to extract all 
anomalous dimensions to three loops

• Hard anomalous dimension ΓH  from general result TB and Neubert ’09 
(see also Gardi and Magnea ’09 + Dixon ’09)

• For n=3, the constraints determine ΓH  uniquely.

• Quark-jet function anomalous dimension         known

• Soft anom. dim. for qg channel is

• Soft anom dim. for qq channel  is 

• Gluon-jet function anom. dim. is        

ANOMALOUS DIMENSIONS

ΓJq

ΓSq̄q =
2CF − CA

CA
ΓSqg

ΓSqg = ΓHqg − ΓJq

ΓJg = ΓHq̄q − ΓSq̄q

11
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• Natural choice for scale in hard function is

• Choice of jet scale      is more difficult, since partonic invariant mass 
varies                            where the hadronic

• For small MX , i.e. very large pT,                          is appropriate

• Choice                   leads to Landau pole ambiguities; is implicit in 
trad. resummation method. 

• Convolution with PDF dynamically enhances threshold region of low 
mX. TB Neubert ’08

• Would like to set        to the average value of mX , but convolution 
with PDFs can only be done numerically.

• Determine       by looking at jet-function corrections as a function 
of      . Reasonable scale choice gives moderate corrections. 

SCALE CHOICE
µh ∼ pT

mX = 0 . . . MX

pT!100 GeV

pT!500 GeV

Μ j scale sensitivity

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.80

0.85
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1.00
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1.20

Μ j!pT

dΣ
"Μ

j#

dΣ
"Μ

j
!
p T
#

pp, ECM!1960 GeV

pp, ECM!14 TeV

Optimal Μ j scale choice
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0.0

0.2

0.4

0.6

0.8

1.0

pT

Μ j

pT

Figure 4: Determination of µj . On the left is the relative cross section for variations of µj

around µj = pT for ECM=1960 GeV. The other scales are chosen to be µh = µf = pT and
µs = µ2

j/µh. On the right, the values of µj which minimize the scale variation at various pT ’s
are shown for the Tevatron and the LHC. The solid lines show a linear regression to the points,
and the dashed line is our default choice, Eq. (107).

power corrections arising in the integration can be of a lower order (and thus of larger size)
than the physical power corrections to the factorization theorem [58].

In [59] it was argued that these spurious singularities are particularly strong in momentum
space and that it is therefore preferable to perform resummation in moment space. However,
the effective theory framework allows us to completely avoid the need to evaluate the coupling
at unphysically small scales. It is not necessary to eliminate the logarithms in the partonic
cross section, what matters is that the final physical cross section is free of large logarithms.
Instead of choosing the jet scale µj at the integrand level we should choose the scale after the
convolution with the PDFs. That is, instead of setting µj = mX , the appropriate jet scale is
something like the average mass of a jet contributing to the cross section.

To get a sense of what an appropriate average jet scale should be, let us consider some
limits. At very large pT , the relevant scale in the physical cross section is the mass of the
hadronic final state, so the choice µ2

j ∼ M2
X = E2

CM(1 − pT /pmax
T ) is appropriate. However, at

moderate pT , which is relevant in practice, the appropriate scale choice is less clear. In this
case, the partonic mass mX at a given pT value can vary kinematically over a large range,
0 < mX < MX , but the fall-off of the PDFs near x → 1 suppresses the region of large MX

and hence of large mX as well. Consequently, the partonic threshold region of small mX

is enhanced. This dynamical enhancement of was pointed out by [6, 7] and was studied in
detail [20] for the case of Drell-Yan production. It was found that this enhancement is mostly
effective for relatively high Drell-Yan masses, which corresponds to high pT in our case.

Since we cannot perform the convolution integrals analytically, we will determine the ap-
propriate choice of µj numerically, following two different procedures. On the one hand, we
can study the size of the corrections which arise at the different scales. Once the scale is
chosen appropriately, no large logarithms and associated large corrections should arise. To
study the size of the corrections, we take the factorized cross section, Eq. (19), as a function

27

µj

µj ∼MX

µj = mX

µj

µj
µj
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SCALE CHOICE

• As a default, we choose

and vary by a factor two. 

pT!100 GeV

pT!500 GeV

Hard function correction
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Figure 3: Size of the hard and jet function one-loop corrections as a function of the scale for
different values of pT at ECM =1960 GeV. The right panel shows the optimal scale choice at
different pT , with the dashed lines denoting our default choice, Eq. (107).

6 Scale choices and matching

While the resummed result is formally independent of the scales µh, µj , and µs, there is
residual higher-order dependence on these scales if the perturbative expansions of the hard,
jet and soft functions are truncated at a finite order. To get a well behaved expansion, we want
to evaluate each contribution at its natural scale, where it does not involve large perturbative
logarithms. In a fixed order calculation, the presence of several scales can preclude such a
choice, but since the hard jet and soft functions each only depend on a single scale, we are
guaranteed that there are scale choices for which large logarithms are absent.

By examining the form of the resummed distribution, Eqs. (92) and (93), it can be seen
that the hard, jet and soft scales appear in the cross section only through the combinations

p2
T

µ2
h

,
m2

X

µ2
j

,
m2

X

pT µs
. (106)

Picking µh = pT , µj = mX and µs = m2
X/pT as the canonical scales would guarantee the

absence of large logarithms, but this choice is problematic. To see the problem, recall that

m2
X = 1

w
p2

T

v̄ (1 − w), and the parton-level distribution is singular at w = 1. This singularity
is integrated over since the hadronic final states are integrated over, and the final photon pT

spectrum is completely regular. Near w ∼ 1, the mass of the partonic final state mX becomes
small and with the choice µj = mX the coupling constants αs(µj) and αs(µs) are evaluated
at arbitrarily low scales. Because of the Landau pole singularity of the running coupling the
convolution integrals are then no longer well-defined. The w ∼ 1 part of the integrand is
suppressed by the resummation, and the contribution from this region of the integral should
only amount to a power-suppressed correction to the overall result. However, the spurious
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Figure 5: Reduction of the factorization scale dependence through matching. The dotted lines
show the µf scale uncertainty of the unmatched NNLL result, the red lines show the NLO
uncertainty, and the green band shows the µf uncertainty on NNLL matched to NLO. This is
for pp̄ collisions at ECM = 1960 GeV integrated over −0.9 < y < 0.9.

of µ, integrate over the partonic phase space, and compare the tree-level value to the result
obtained after including the one-loop corrections to either the hard, jet, or soft function. The
result is shown in Figure 3. The figure shows that the hard corrections are moderate if they
are evaluated at µh ∼ pT , as expected. The jet function corrections are small at a lower value.
Looking at the middle panel, we find that the choice µj ∼ pT

2 is reasonable for small pT . For
larger values of pT , the the optimal scale µj is lower than pT

2 . To be concrete, let us define the
optimal scale as the scale which minimizes (or in the case of the hard function maximizes) the
correction. The right-hand panel shows that the choices

µh = pT ,

µj =
pT

2

(
1 − 2

pT

ECM

)
, (107)

provide a good approximation to the optimal scale choice as a function of pT . For the soft
scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
scales for the qq̄ and qg channels are compatible.

The reasoning behind the above procedure for choosing the scale is that there are no large
logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT

spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
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logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT

spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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SCALE VARIATIONS

• Matching scales variations are small, factorizations scale uncertainty 
dominates. Matching to NLO reduces factorization scale dep.

Factorization scale variation
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Figure 6: Scale variations at the LHC (14 TeV). The lighter bands are NLL and the darker
bands are NNLL matched to NLO. The unmatched NNLL curves are shown as dotted lines.

µj = 0.57(pT − 1.9 pT

ECM
). In the right panel, we show these points, the fits, and our simple

scale choice, Eq. (107). It is comforting that also this criterion leads to similar results.
So that the results from SCET agree with the NLO partonic cross section in the appropriate

limit, power corrections must be added through matching. Because of the peculiar kinematics
of the threshold limit, this must be done with some care. The factorization theorem in SCET
is derived in the limit where the momentum fractions x1 and x2 of the incoming partons, and
the partonic threshold variable w, are all close to 1. The resummed cross section is therefore
only formally µf independent for very large pT , in contrast to the fixed-order cross section,
which has additional terms to cancel the µf dependence exactly, but only works to order αs.
These additional terms are not singular in the threshold variables and therefore not reproduced
by the leading-power factorization theorem. In the phenomenologically relevant regime, x1, x2

and w may not be close to 1, and the residual scale dependence might not be small. This NLO
part of the µf sensitivity can be removed as we match to the NLO partonic cross section, if
the factorization scale in the NLO cross section is varied appropriately. For the matching, we
use

(
d2σ

dvdw

)matched

=

(
d2σ

dvdw

)NNLL

−
(

d2σ

dvdw

)NNLL

µh=µj=µs=µf

+

(
d2σ

dvdw

)NLO

µf

. (108)

The subscripts of the last two terms mean set all scales equal to the relevant value of µf . Having
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MATCHING TO FIXED ORDER 

• We match the NLO fixed order result in JETPHOX. This allows us to 
account for isolation cuts and fragmentation contributions.
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Figure 5: Reduction of the factorization scale dependence through matching. The dotted lines
show the µf scale uncertainty of the unmatched NNLL result, the red lines show the NLO
uncertainty, and the green band shows the µf uncertainty on NNLL matched to NLO. This is
for pp̄ collisions at ECM = 1960 GeV integrated over −0.9 < y < 0.9.

of µ, integrate over the partonic phase space, and compare the tree-level value to the result
obtained after including the one-loop corrections to either the hard, jet, or soft function. The
result is shown in Figure 3. The figure shows that the hard corrections are moderate if they
are evaluated at µh ∼ pT , as expected. The jet function corrections are small at a lower value.
Looking at the middle panel, we find that the choice µj ∼ pT

2 is reasonable for small pT . For
larger values of pT , the the optimal scale µj is lower than pT

2 . To be concrete, let us define the
optimal scale as the scale which minimizes (or in the case of the hard function maximizes) the
correction. The right-hand panel shows that the choices

µh = pT ,

µj =
pT

2

(
1 − 2

pT

ECM

)
, (107)

provide a good approximation to the optimal scale choice as a function of pT . For the soft
scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
scales for the qq̄ and qg channels are compatible.

The reasoning behind the above procedure for choosing the scale is that there are no large
logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT

spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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Figure 6: Scale variations at the LHC (14 TeV). The lighter bands are NLL and the darker
bands are NNLL matched to NLO. The unmatched NNLL curves are shown as dotted lines.

µj = 0.57(pT − 1.9 pT

ECM
). In the right panel, we show these points, the fits, and our simple

scale choice, Eq. (107). It is comforting that also this criterion leads to similar results.
So that the results from SCET agree with the NLO partonic cross section in the appropriate

limit, power corrections must be added through matching. Because of the peculiar kinematics
of the threshold limit, this must be done with some care. The factorization theorem in SCET
is derived in the limit where the momentum fractions x1 and x2 of the incoming partons, and
the partonic threshold variable w, are all close to 1. The resummed cross section is therefore
only formally µf independent for very large pT , in contrast to the fixed-order cross section,
which has additional terms to cancel the µf dependence exactly, but only works to order αs.
These additional terms are not singular in the threshold variables and therefore not reproduced
by the leading-power factorization theorem. In the phenomenologically relevant regime, x1, x2

and w may not be close to 1, and the residual scale dependence might not be small. This NLO
part of the µf sensitivity can be removed as we match to the NLO partonic cross section, if
the factorization scale in the NLO cross section is varied appropriately. For the matching, we
use

(
d2σ

dvdw

)matched

=

(
d2σ

dvdw

)NNLL

−
(

d2σ

dvdw

)NNLL

µh=µj=µs=µf

+

(
d2σ

dvdw

)NLO

µf

. (108)

The subscripts of the last two terms mean set all scales equal to the relevant value of µf . Having
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CROSS SECTION AT THE TEVATRON

• Rapidly falling, so in the next slides I will plot                     .  

•                is the direct photon production w/o isolation cuts.
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Figure 7: Direct photon distributions at the Tevatron, compared to SCET. Green bands are
scale uncertainty. On the left, comparison is made to CDF data. On the right, the rapidity
distribution is shown for pT = 200 GeV. The SCET prediction, matched to NLO, is compared
to the scale uncertainty on the NLO prediction (solid red lines) and to the PDF uncertainty
(dashed blue lines).

µf in the matching terms vary in this way significantly reduces the overall µf dependence,
as can be seen in Figure 5. This figure also shows that the factorization scale uncertainty at
large pT is smaller than the uncertainty on the NLO cross section, even without matching.

With the canonical scales and matching procedure established, we estimate the higher
order uncertainty by varying the scales by a factor of 1

2 to 2 around their default values. The
resulting uncertainties are shown in Figure 6. The overall uncertainty is dominated by the
factorization scale variation. The small bands from variations of µj and µs should be taken
with a grain of salt. The above discussion shows that our scale choice is close to the point
with minimal scale sensitivity, so that the scale variation might underestimate the higher order
corrections. Also, we observe that the one-loop corrections to the soft function happen to be
small in our case, much smaller than what was found in other applications.

7 Results

To compare to data, we need to deal with the important experimental issue of photon isolation.
To account for isolation we use the Monte Carlo program jetphox. This program includes
both the NLO partonic cross section and a fragmentation contribution, applying a user-defined
isolation criteria. To correct the SCET distributions for isolation, fragmentation, and finite
NLO effects, we match to jetphox, i.e. we use the output of this program for the NLO cross
section in the matching relation Eq. (108). To compare to the D0 data [60], we attempt to
match their isolation criterion by demanding less than 10% of the energy in a cone of R = 0.4
around the photon be hadronic. For the CDF data [61, 62], we require less than 2 GeV of
energy inside the R = 0.4 cone. Some studies of sensitivity to isolation parameters can be
found in [61] and we do not attempt to reproduce them here.

In addition, we apply to all the Tevatron theoretical calculations an overall rescaling
of 0.913 (taken from [61, 62]) to account for underlying event, multiple interactions, and
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TEVATRON RESULTS
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Figure 8: Fixed order and resummed comparison to D0 and CDF data. Left plots show
the LO and NLO scale uncertainties. Right plots show the SCET predictions with NLL
resummation or with NNLL resummation matched to fixed order. The dashed blue lines are
PDF uncertainties. The curves are all corrected for isolation, fragmentation, and hadronization
as described in the text, while the reference distribution dσ(dir)

NLO is the fully inclusive NLO
distribution without corrections.

hadronization. The D0 data corresponds to 380 pb−1 of integrated luminosity at ECM = 1960
GeV, integrated over −0.9 < y < 0.9. The CDF data corresponds to 2.5 fb−1 of integrated
luminosity at ECM = 1960 GeV, integrated over −1 < y < 1. For all calculations, including
jetphox and scale uncertainties, we use the MSTW 2008 NNLO PDFs [63]. The rationale
behind this choice is that our calculation includes the dominant NNLO corrections.

The scale uncertainties for the fixed order result include variation of the factorization
scale µf , the renormalization scale µR, and a fragmentation scale M ′. The fragmentation
scale is related to collinear singularities in final state photon emission from, for example, qq̄
final states, which are relevant starting at NLO. For simplicity, we call all these scales µ
and vary them together. We define the NLO uncertainty as the maximum and minimum
value of the prediction from varying these scales between 1

2pT < µ < 2pT . For the SCET
prediction, we vary the jet, hard, soft and factorization scales. The largest uncertainty is
from the factorization scale variation, even after the proper matching to NLO (see previous
section), and so we use the µf dependence for the SCET uncertainty bands. Again, we take
the maximal and minimal values along the range 1

2pT < µf < 2pT .

31

NLL

NNLL+NLO
CDF CDF

DZero DZero

NLO

LO

Fragmentation and isolation from JETPHOX. Additional hadronisation correction 
(a factor 0.91) as determined in CDF paper from MC studies.
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LHC RESULTS

• Direct contribution only: no fragmentation or isolation cuts.
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Figure 9: Predictions for the inclusive direct photon distribution at the LHC. Left plots
show the LO and NLO scale uncertainty. Right plots show the SCET predictions with NLL
resummation or with NNLL resummation matched to fixed order. The dashed blue lines are
PDF uncertainties. No correction for isolation or hadronization is included. In contrast to
Figure 8, here NLO refers to the inclusive direct photon distribution whose central value is
identical to the reference distribution dσ(dir)

NLO.

Figure 7 shows the pT and rapidity distributions at the Tevatron. The pT distribution is
compared to CDF data [61, 62] and the rapidity distribution only to the inclusive NLO result
and the PDF uncertainties. No comparison to data has been made in the rapidity plot because
all of the published Tevatron data differential in the photon rapidity is differential in the jet
rapidity as well, for which our factorization theorem does not apply. Nevertheless, such a
comparison would be interesting as there is a significant discrepancy between the SCET result
and the NLO prediction.

For more detail, we show in Figure 8 the normalized pT spectra and compare to CDF [61,
62] and D0 data [60]. In this figure and in the LHC plots in Figure 9, we normalize to
σNLO, the inclusive NLO direct photon cross section, without isolation cuts and fragmentation
contributions, evaluated with the default scale choices. The left plots show the LO and
NLO distributions, matched to jetphox, with the blue dashed lines indicating NLO PDF
uncertainties (from the MSTW 2008 NNLO PDFs). The right plots show the predictions from
SCET at NLL and NNLL, also matched to jetphox, with the appropriate PDF uncertainties
included as well. Note that at high pT , the scale uncertainty for the SCET result is smaller
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• Factorization theorem has exactly the same structure as in 
the photon case

• Same soft and jet function, but different hard function and 
kinematics.

W AND Z PRODUCTION

d2
σ

dydpT
= H ⊗ J ⊗ S ⊗ f1 ⊗ f2

p

X

p

W±, Z
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W AND Z PRODUCTION

• Use  MCFM for NLO

• All scales varied by a factor 2 around default
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W AND Z PRODUCTION

•NNLL+NLO has somewhat larger central value, reduced scale 
dependence.
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CONCLUSIONS
• A lot of progress during the past year towards the 

analysis of more complex collider observables in SCET

• n-jet anomalous dimensions 

• completely known to NNLL

• fulfills stringent all-order constraints

• First application involving three directions of large 
momentum flow

• Photon production at large pT to NNLL

• Computation of W and Z finished, phenomenological 
analysis in progress

23


