

OUTLINE

- Introduction
 - Soft-Collinear Effective Theory
 - Photon production cross section
- NNLL resummation for at large p_{T} photon production TB, M. Schwartz 0911.0681
 - Resummation by RG evolution
 - Numerical results and comparison to Tevatron data
- NNLL resummation for W and Z production
 TB, Ch. Lorentzen, M. Schwartz, to appear

SOFT-COLLINEAR EFFECTIVE THEORY

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

• EFTs split physics into high- and low-energy part. In collider processes, we have an interplay of three momentum regions

- HardCollinearSofthigh-energylow-energy part
- Correspondingly, EFT for such processes has two lowenergy modes:
 - Collinear fields describing the energetic partons propagating in a given direction, and
 - soft fields which mediate long range interactions among them.

RESUMMATIONS WITH SCET

- EFT provides an elegant framework to factorize contributions associated with different scales.
 - Terms enhanced by large log's of scale ratios are resummed by RG evolution
- By now, many applications of SCET to collider processes. Resummations in many cases up to N³LL:
 - thrust distribution in e⁺e⁻
 - Drell-Yan rapidity dist.
 - Drell-Yan, low pt
 - inclusive Higgs production

```
TB, Schwartz '08;
Abbate et al. '10
```

TB, Neubert, Xu '07

```
Gao, Li, Liu '05; Idilbi, Ji, Yuan '05;
Petriello, Sonny '09;
TB, Neubert to appear Monday
Idilbi, Ji, Ma and Yuan '06;
Ahrens, TB, Neubert, Yang '08, update for
ICHEP, see M. Neubert's talk
```

• ...

all of these involve two directions of large energy flow

N-JET PROCESSES

- Important progress in past year towards higher-log resummation of processes with large energy flow in several directions.
 - All-order constraints on the anomalous dimensions from soft-collinear factorization, factorization in collinear limit, non-abelian exponentiation.

TB, Neubert '09; Gardi, Magnea '09 + Dixon '09

- General result for hard anomalous dimensions relevant for NNLL of *n*-jet processes
 - massless: determined by constraints explains two-loop results of Aybat, Dixon and Sterman '06
 - massive: two-loop computation of three-particle correlations

 Ferroglia, Neubert, Pecjak, Yang '09

PHOTON PRODUCTION $pp \rightarrow \gamma + X$ AT LARGE p_T

TB, M. Schwartz 09 | 1.068 |

- First SCET calculation of a physical cross section with energetic particles in three directions.
- Perform NNLL resummation of $\alpha_s^n \log^{2n}(M_X/p_T)$ corrections arising for at large p_T .
 - NLL was known Laenen et al. '98, Catani et al. '98, Kidonakis and Owens '99
- In the meantime we have extended the result also to W^{\pm} and Z production TB, Lorentzen, Schwartz, to appear
- Other examples involving multiple directions
 - top-production Ahrens, et al. '10
 - EW Sudakov resummation Chiu, et al. '08, '09

PHOTON PRODUCTION MECHANISMS

Direct production

- sensitive to gluon PDF
- dominates fragmentation very at high p_T
- perform NNLL resummation for this part match to NLO (own code for inclusive case; JetPhox for isolation)

Fragmentation

- needs non-perturbative fragmentation function
- can be suppressed by putting isolation cone around γ
- included in NLO (Jetphox)

FACTORIZATION THEOREM AT LARGE PT

• Have derived factorization theorem for prompt photon production at large $p_T\gg M_X$

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y \mathrm{d}p_T} = H \otimes J \otimes S \otimes f_1 \otimes f_2$$

• (there are different partonic channels, with different H, J, S and f's)

HARD, JET AND SOFT FUNCTIONS

- Hard function is square of on-shell $qg \rightarrow q\gamma$ amplitude. Ellis et al. '83, Arnold and Reno '89
- · Jet functions are quark and gluon propagators in light-cone gauge.
- Soft function is matrix element of Wilson lines Y_i from $0 \dots \infty$ along the beam and jet directions.

$$S_{\bar{q}q}(k_{+}) = \frac{1}{N_c} \sum_{X_s} \left| \left\langle X_s \left| \mathbf{T} \left[Y_1^{\dagger}(0) Y_J(0) t^a Y_J^{\dagger}(0) Y_2(0) \right] \right| 0 \right\rangle \right|^2 (2\pi) \delta(n_J \cdot p_{X_s} - k_+)$$

RESUMMATION BY RG EVOLUTION

• Evaluate each part at its characteristic scale, evolve to common scale:

ANOMALOUS DIMENSIONS

- Have analytic solution for the RGs of H, J and S. TB and Neubert '06
- · Using RG invariance and known results, we are able to extract all anomalous dimensions to three loops
 - Hard anomalous dimension Γ_H from general result TB and Neubert '09 (see also Gardi and Magnea '09 + Dixon '09)
 - For n=3, the constraints determine Γ_H uniquely.
 Quark-jet function anomalous dimension Γ_{J_q} known
- Soft anom. dim. for qg channel is $\Gamma_{S_{qg}}=\Gamma_{H_{qg}}-\Gamma_{J_q}$. Soft anom dim. for qq channel is $\Gamma_{S_{\bar{q}q}}=\frac{2C_F-C_A}{C_A}\Gamma_{S_{qg}}$
 - Gluon-jet function anom. dim. is $\Gamma_{J_g} = \Gamma_{H_{ar q}q} \Gamma_{S_{ar q}q}$

ANOMALOUS DIM

- Have analytic solution for the RGs of F'
- Using RG invariance and known r Using RG invariance and known recommon land RG invariance and known recommon recommon RG invariance and known recommon RG in anomalous dimensions to three

 - Gluon-jet function anom. dim. is $\Gamma_{J_a} = \Gamma_{H_{\bar{q}a}} \Gamma_{S_{\bar{q}a}}$

SCALE CHOICE

- Natural choice for scale in hard function is $\mu_h \sim p_T$
- Choice of jet scale μ_j is more difficult, since partonic invariant mass varies $m_X=0\dots M_X$ where the hadronic $M_X^2=E_{\rm CM}^2(1-p_T/p_T^{\rm max})$
 - For small M_X , i.e. very large $p_{\it T}$, $\mu_j \sim M_X$ is appropriate
 - Choice $\mu_j = m_X$ leads to Landau pole ambiguities; is implicit in trad. resummation method.
- Convolution with PDF dynamically enhances threshold region of low $m_{\rm X}$. TB Neubert '08
 - Would like to set μ_j to the average value of $m_{\rm X}$, but convolution with PDFs can only be done numerically.
 - Determine μ_j by looking at jet-function corrections as a function of μ_j . Reasonable scale choice gives moderate corrections.

SCALE CHOICE

• As a default, we choose

$$\mu_h = p_T \,,$$

$$\mu_j = \frac{p_T}{2} \left(1 - 2 \frac{p_T}{E_{\rm CM}} \right) ,$$

$$\mu_s = \mu_j^2/\mu_h$$

and vary by a factor two.

SCALEVARIATIONS

• Matching scales variations are small, factorizations scale uncertainty dominates. Matching to NLO reduces factorization scale dep.

MATCHINGTO FIXED ORDER

• We match the NLO fixed order result in JETPHOX. This allows us to account for isolation cuts and fragmentation contributions.

$$\left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}v \mathrm{d}w}\right)^{\text{matched}} = \left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}v \mathrm{d}w}\right)^{\text{NNLL}} - \left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}v \mathrm{d}w}\right)^{\text{NNLL}}_{\mu_h = \mu_j = \mu_s = \mu_f} + \left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}v \mathrm{d}w}\right)^{\text{NLO}}_{\mu_f}.$$

CROSS SECTION AT THE TEVATRON

• Rapidly falling, so in the next slides I will plot

$$\frac{d\sigma - d\sigma_{\rm NLO}^{\rm (dir)}}{d\sigma_{\rm NLO}^{\rm (dir)}}$$

• $d\sigma_{
m NLO}^{
m (dir)}$ is the direct photon production w/o isolation cuts.

TEVATRON RESULTS

Fragmentation and isolation from JETPHOX. Additional hadronisation correction (a factor 0.91) as determined in CDF paper from MC studies.

LHC RESULTS

• Direct contribution only: no fragmentation or isolation cuts.

WANDZPRODUCTION

 Factorization theorem has exactly the same structure as in the photon case

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y \mathrm{d}p_T} = H \otimes J \otimes S \otimes f_1 \otimes f_2$$

 Same soft and jet function, but different hard function and kinematics.

WANDZPRODUCTION

- Use MCFM for NLO
- All scales varied by a factor 2 around default

WANDZPRODUCTION

 NNLL+NLO has somewhat larger central value, reduced scale dependence.

CONCLUSIONS

- A lot of progress during the past year towards the analysis of more complex collider observables in SCET
 - n-jet anomalous dimensions
 - completely known to NNLL
 - fulfills stringent all-order constraints
- First application involving three directions of large momentum flow
 - Photon production at large p_T to NNLL
 - \bullet Computation of W and Z finished, phenomenological analysis in progress