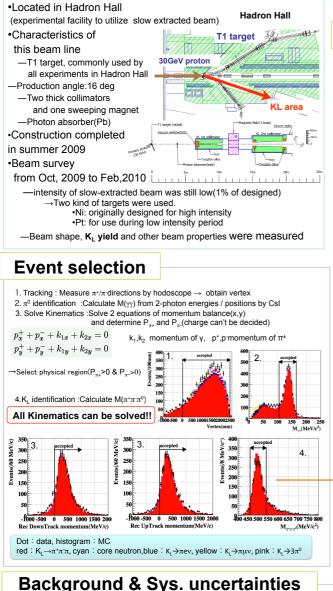
Measurement of the K_1 yield at the K_1 beam line newly built at J-PARC K.Shiomi for the KOTO collaboration



Physics motivation

- "Direct" CP violation process Measurement of the parameter η in CKM $Br(K_L \rightarrow \pi^0 vv) \propto Vtd - Vtd^* = 2Im(Vtd) \propto \eta$
- Theoretical uncertainty:1-2%
- →An excellent tool for discovery of new physics
- •Search for the $K_L \rightarrow \pi^0 \nu \nu$
- Challenging task
 - very small branching ratio \rightarrow Br(K₁ $\rightarrow \pi^0 vv)=2.5x10^{-11}$
 - all neutral particle →only 2 photons visible - Experimental upper limit→2.6x10⁻⁸(@90%C.L) by KEK-E391a

KOTO beam line

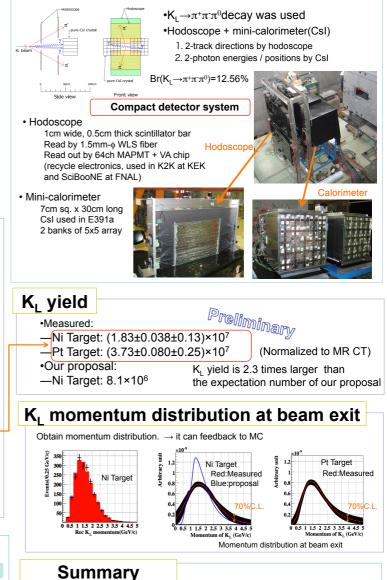
Background contamination # of BG is estimated by MC

Systematic uncertainties %

			Cut effect	6.0%	5.7%
3π ⁰	0.6%±0.08%	0.6%±0.09%	K _L momentum distribution	3.0%	2.8%
Core Neutron	0.5%±0.3%	0.4%±0.03%	Others	2%	1.9%
			sum	7%	6.6%

Kyoto university, Kyoto, Japan

KOTO experiment


- •Measures $K_1 \rightarrow \pi^0 \nu \nu$
 - Use high intensity K_L beam newly built at J-PARC
 - Upgrade E391a detector
 - Longer run time

→Expect 3 orders of magnitude better sensitivity than E391a The goal is the discovery of the signal event

8.1x10 ⁶	3.3x10 ⁵	×30/sec
3 snowmass years = 12 months	2 months	×6
4%	2%	×2
3.6%	1%	×3.6
0.8×10 ⁻¹¹	1.1×10 ⁻⁸	×1300
	8.1x10 ⁶ 3 snowmass years = 12 months 4% 3.6%	8.1x10 ⁶ 3.3x10 ⁵ 3 snowmass years = 12 months 2 months 4% 2% 3.6% 1%

K_L yield is very important to achieve SM sensitivity

K₁ yield measurement

•New method measuring neutral kaon is developed. In this method, the neutral kaon can be measured with a simple and compact detector system under the no background.