Vulnerability Assessment and Secure

Coding Practices

Vulnerability Assessment and
Secure Coding Practices
for Middleware

Elisa Heymann Barton P. Miller
Computer Architecture and James A KUpSCh
Operating Systems Department Computer Sciences Department
Universitat Autonoma de Barcelona University of Wisconsin

CERN, Geneva, Switzerland
December 7, 2009

[Universitat This research funded in part by Department of Homeland Securiy y grant FAB750-10-2-0030 (funded through AFRL).
ational Science Foundation grant OCI-0844219, the
g0 Supercomputing Center, and National Science

Surprise Quiz

One small function per problem

Find as many potential vulnerabilities as
you can (there may be more than one)

Assume:
— pointer arguments are never NULL
— strings are always NULL terminated

After each, we will discuss the answers

Vulnerability Assessment and Secure

Coding Practices

Problem 2

/* Safely Exec program: drop privileges to user uid and group
* gid, and use chroot to restrict file system access to jail
* directory. Also, don®"t allow program to run as a
* privileged user or group */

1. void ExecUid(int uid, int gid, char *jailDir,

2. char *prog, char *const argv[])

3. {

4. if (uid == 0 |] gid == 0) {

5. FailExit(""ExecUid: root uid or gid not allowed™);
6. }

7.

8. chroot(jailDir); /* restrict access to this dir */
9.

10. setuid(uid); /* drop privs */

11. setgid(gid);

12.
13. Fprintf(LOGFILE, "Execvp of %s as uid=%d gid=%d\n",
14. prog, uid, gid);

15. FFlush(LOGFILE);

16.

17 execvp(prog, argv);

18:}

Part 2 Roadmap

Buffer overflows

— Injections
» Part 2: Secure coding - Integer
practices - Race conditions
— Introduction — Privileges

Command line
Environment

— Handling errors
— Numeric parsing

- Missing error detection
— ISO/IEC 24731 - General engineering
- Compiler warnings

Vulnerability Assessment and Secure
Coding Practices

Discussion of the Practices

Description of vulnerability
Signs of presence in the code
Mitigations

Safer alternatives

Handling Errors

If a call can fail, always check for errors
optimistic error handling (i.e. none) is bad
Error handling strategies:

— Handle locally and continue

— Cleanup and propagate the error

— Exit the application

All APIs you use or develop, that can fail,
mustbe able to report errors to the caller

* Using exceptions forces error handling

THE UNIVERSITY Wniversilal

Vulnerability Assessment and Secure

Coding Practices

Numeric Parsing
Unreported Errors

e atol, atol, atof, scant family (with %u,
%1, %d, %x and %o specifiers)
— Out of range values results in unspecified
behavior

— Non-numeric input returns 0

- Use strtol, strtoul, strtoll, strtoull,
strtof, strtod, strtold which allow error
detection

TTTTT tyeasity “ Universitat
WISCONSIN /% fopmene 8

Missing Error Detection

e strcat, strcpy, strncat, strncpy, gets,
getpass, getwd, scanf (using %s or
%[...] without width specified)

— Never use these

— Unable to report if buffer would overflow
(not enough information present)

— Safer alternatives exist

Vulnerability Assessment and Secure

Coding Practices

ISO/IEC 24731

Extensions for the C library:
Part 1, Bounds Checking Interface

Functions to make the C library safer

Meant to easily replace existing library
calls with little or no other changes

Aborts on error or optionally reports error
Very few unspecified behaviors

All updated buffers require a size param
» http://www.open-std.orgljtcl/sc22/wg14

TTTTT syensioy " Al]::;m
WISCONSIN /% Soe 10

Buffer Overflows

* Description
— Accessing locations of a buffer outside the boundaries
of the buffer
e Common causes
— C-style strings
— Array access and pointer arithmetic in languages
without bounds checking
— Off by one errors
— Fixed large buffer sizes (make it big and hope)
— Decoupled buffer pointer and its size
¢ If size unknown overflows are impossible to detect
* Require synchronization between the two
* Ok if size is implicitly known and every use knows it (hard)

THE UNIVERSITY Universital iy
w WISCONSIN ?‘ v 1 @

Vulnerability Assessment and Secure
Coding Practices

Why Buffer Overflows
are Dangerous

An overflow overwrites memory adjacent
to a buffer

This memory could be

- Unused

- Code

- Program data that can affect operations

- Internal data used by the runtime system
Common resultis a crash

Specially crafted values can be used for an
attack

P Univessitat i B im0
wW[sc‘éNSIN ." Latpaccnr 12 @ Ex

Bufter Overtlow ot User Data
Affecting Flow of Control

char 1d[8];
int validld = 0O; /> not valid */

id validid
\O |\O |\O (\O
gets(id); /* reads "evillogin'*/
id validid
e |v[i [I [I lo|g]|i ("]\0\0\O

/* validld is now 110 decimal */

if (Isvalid(id)) validld = 1; /* not true */

it (validld) /* is true */
{DoPrivilegedOp();} /* gets executed */

NATO
OTAN "y
Ay

THE UNIVERSITY Wniversilal

WISCONSIN /% Astomoces 13 Y b

Vulnerability Assessment and Secure

Coding Practices

Buffer Overflow Danger Signs:

Missing Buffer Size

e gets, getpass, getwd, and scant family
(with %s or %[...] specifiers without width)
— Impossible to use correctly: size comes solely
from user input
— Alternatives

Unsafe Safe

gets(s) fgets(s, sLen, stdin)
getcwd(s) getwd(s, sLen)
scanf("'%s™, s) scanf("'%100s™, s)

TTTTT tyeasity Universitat
WISCONSIN /% fopmene 14

strcat, strcpy, sprintt,
vsprintf

— Impossible for function to detect overflow
* Destination buffer size not passed
— Difficult to use safely w/o pre-checks
* Checks require destination buffer size
* Length of data formatted by printf
* Difficult & error prone
* Best incorporated in the function

Proper usage: concat s1, s2 into dst
IT (dstSize < strlen(sl) + strlen(s2) + 1)
{ERROR("'buffer overflow");}
strcpy(dst, sl);
strcat(dst, s2);

WISCONSIN i 15

nnnnnnnn -

Vulnerability Assessment and Secure

Coding Practices

Buffer Overflow Danger Signs:

Difficult to Use and Truncation

e strncat(dst, src, n)
— n is the maximum number of chars of src to append
(trailing null also appended)
— canoverflowif n>=(dstSize-strlen(dst))
e strncpy(dst, src, n)

— Writes n chars into dst, if strien(src)<n, itfills the
other n-strlen(src) chars with 0’s

- If strlen(src)>=n, dstis not null terminated
* Truncation detection not provided

* Deceptively insecure
— Feels safer but requires same careful use as strcat

rrrrr yERsiTY Universitat
: m
WISCONSIN /% emom 16

Safer String Handling:
C-library functions
e snprintf(buf, bufSize, fmt, ...) and
vsnprintf

— Truncation detection possible
(result >= bufSize implies truncation)

— Can be used as a safer version of strcpy and
strcat

Proper usage: concat s1, s2 into dst
r = snprintf(dst, dstSize, "%s%s'",sl, s2);
IT (r >= dstSize)

{ERROR(*"truncation'™);}

THE UNIVERSITY Wniversilal

WISCONSIN 7% Sesaoms 17

Vulnerability Assessment and Secure

Coding Practices

Injection Attacks

* Description
— A string constructed with user input, that is then
interpreted by another function, where the string is not
parsed as expected
* Command injection (in a shell)
* Format string attacks (in printf/scanf)
* SQL injection
* Cross-site scripting or XSS (in HTML)

* General causes
- Allowing metacharacters

— Not properly quoting user data if metacharacters are
allowed

TTTTT syensioy v‘ Al];:ﬂ'ﬂtxﬂ
WISCONSIN s 18

nnnnnnnn -

SQL Injections

» User supplied values used in SQL
command must be validated, quoted, or
prepared statements must be used

e Signs of vulnerability
— Uses a database mgmt system (DBMS)
— Creates SQL statements at run-time

- Inserts user supplied data directly into
statement without validation

WISCONSIN i 19

Vulnerability Assessment and Secure
Coding Practices

SQL Injections:

attacks and mitigations

* Dynamically generated SQL without
validation or quoting is vulnerable

$u =" "; drop table t --";
$sth = $dbh->do("'select * from t where u = "$u""'");

Database sees 2 statements:
select * from t where u = * *; drop table t --~

* Use prepared statements to mitigate
$sth = $dbh->do('select * from t where u = 7, $u);
— SQL statement template and value sent to

database
— No mismatch between intention and use
iscensn TR, 20 Y PERG
HI, THIS 15 OH, DEAR —DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SON SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING S0ME N R WAY Robert'); DROP T HOPE YOURE HAPPY.
(OMPUTER TROUBLE. / TABLE Students; -~ 7 ‘I’
N AND T HOPE
) ~OH. YES. UTTLE “< YOUVE LEARNED
WE [BOBBY TABLES, To SANMIZE YOUR
WE CALL HIM. DATABASE INPUTS,

21

10

Vulnerability Assessment and Secure

Coding Practices

Integer Vulnerabilities

* Description

- Many programming languages allow silent loss of
integer data without warning due to
* Overflow
* Truncation
» Signed vs. unsigned representations
— Code may be secure on one platform, but silently
vulnerable on another, due to different underlying
integer types.

* General causes
— Not checking for overflow
- Mixing integer types of different ranges
- Mixing unsigned and signed integers

TTTTT pyensies " Wit
WISCONSIN " deBarcelans 22

Integer Danger Signs

Mixing signed and unsigned integers
Converting to a smaller integer

Using a built-in type instead of the API’s
typedef type

However built-ins can be problematic too:
size_tis unsigned, ptrdiff_tis signed

Assigning values to a variable of the
correct type before data validation
(rangelsize check)

) wiscoisi Y= ’

11

Vulnerability Assessment and Secure

Coding Practices

Race Conditions

* Description

— A race condition occurs when multiple threads of
control try to perform a non-atomic operation on a
shared object, such as

* Multithreaded applications accessing shared data
* Accessing external shared resources such as the file system

e General causes

— Threads or signal handlers without proper
synchronization

- Non-reentrant functions (may have shared variables)

- Performing non-atomic sequences of operations on
shared resources (file system, shared memory) and
assuming they are atomic

WiscONSIN LT Sems 24

File System Race Conditions

* Afile system maps a path name of a file or other
object in the file system, to the internal identifier
(device and inode)

* If an attacker can control any component of the
path, multiple uses of a path can result in
different file system objects

» Safe use of path

— eliminate race condition
e use only once
 use file descriptor for all other uses

- verify multiple uses are consistent

WISCONSIN i 25

12

Vulnerability Assessment and Secure

Coding Practices

File System Race Examples

» Check properties of a file then open
Bad: access or stat = open

Safe: open = fstat

* Createfile if it doesn’t exist
Bad: if stat fails = creat(fn, mode)
Safe: open(fn, O _CREAT]O_EXCL, mode)
— Never use O_CREAT without O _EXCL

— Better still use safefile library

* http://lwww.cs.wisc.edu/mist/safefile
James A. Kupsch and Barton P. Miller, “How to Open a File and Not Get
Hacked,” 2008 Third International Conference on Availability, Reliability and

Security (ARES), Barcelona, Spain

TTTTT pyensies " Wit
WISCONSIN " deBarcelans 26

Race Condition Temporary Files

* Temporary directory (/tmp) is a dangerous area
of the file system
— Any process can create a directory entry there

— Usually has the sticky bit set, so only the owner can
delete their files

* Ok to create frue temporary filesin /tmp

— Create using mkstemp, unlink, access through
returned file descriptor

— Storage vanishes when file descriptor is closed
» Safe use of /tmp directory

— create a secure directory in /tmp

— use it to store files

THE UNIVERSITY Usiversital
w WISCONSIN :" ;q'“; reelon 27

13

Vulnerability Assessment and Secure
Coding Practices

Race Condition Examples

time

 Your Actions Attackers Action

s=strdup(*"'/tmp/zXXXXXX"")—s
tempnam(s)
// s now "'/tmp/zRANDOM™ +— link "*/etc/passwd”
+—— Tile '/ tmp/zRANDOM""
+—— symlink(link, file)

Tt = fopen(s, "w+')
// writes now update
// /etc/passwd

Safe Version

fd = mkstemp(s)

f = fdopen(fd, "w+') v
TTTTT ayessity Uiversitat
WISCONSIN /% fopmene 28

Not Dropping Privilege

* Description
— When a program running with a privileged status
(running as root for instance), creates a process or
tries to access resources as another user
* General causes
— Running with elevated privilege

— Not dropping all inheritable process attributes such as
uid, gid, euid, egid, supplementary groups, open file
descriptors, root directory, working directory

— not setting close-on-exec on sensitive file descriptors

THE UNIVERSITY Unsiversital
) wiscoisi Y= "

Vulnerability Assessment and Secure

Coding Practices

Not Dropping Privilege: chroot

e chroot changes the root directory for the
process, files outside cannot be accessed

* Only root can use chroot

* Need tochdir(*'/'") to somewhere
underneath the new root directory,

otherwise relative pathnames are not
restricted

* Need to recreate all support files used by
program in new root: /etc, libraries, ...

WISCONSIN | /% Sopme 30 @ o

Insecure Permissions

» Set umask when using mkstemp or fopen

- File permissions need to be secure from
creation to destruction

* Don’t write sensitive information into
insecure locations (directories need to
have restricted permission to prevent
replacing files)

* Executables, libraries, configuration, data
and log files need to be write protected

WISCONSIN :“ i 31

15

Vulnerability Assessment and Secure

Coding Practices

Insecure Permissions

* If afile controls what can be run as a
privileged, users that can update the file
are equivalent to the privileged user

File should be:
- Owned by privileged user, or
- Owned by administrative account
* No login
* Never executes anything, just owns files
« DBMS accounts should be granted minimal
privileges for their task

[— Wiversitat i N
WISCONSIN /¥ Aemens a2 N

Trusted Directory

* A trusted directory is one where only trusted
users can update the contents of anything in the
directory or any of its ancestors all the way to the
root

* A trusted path needs to check all components of
the path including symbolic links referents for
trust

* A trusted path is immune to TOCTOU attacks
from untrusted users

» safefile library
— http://lwww.cs.wisc.edu/mist/safefile
— Determines trust based on trusted users & groups

WISCONSIN)% Asmome 33 N

16

Vulnerability Assessment and Secure

Coding Practices

Command Line

* Description

— Convention is that argv[0] is the path to the
executable

— Shells enforce this behavior, but it can be set
to anything if you control the parent process
* General causes
- Using argv[0] as a path to find other files
such as configuration data

— Process needs to be setuid or setgid to be a
useful attack

WISCONSIN /% Sopmene 34

Environment

List of (hame, value) string pairs
Available to program to read

Used by programs, libraries and runtime
environment to affect program behavior
Mitigations:

— Clean environment to just safe names & values
— Don’t assume the length of strings

— Avoid PATH, LD_LIBRARY_PATH, and other
variables that are directory lists used to look

THE UNIVERSITY Wniversilal

for execs and libs

WISCONSIN)% Asmome 35 N

17

Vulnerability Assessment and Secure

Coding Practices

General Software Engineering

Don’t trust user data
— You don’t know where that data has been
Don’t trust your own c/ient software either

- It may have been modified, so always revalidate data at the
server.

Don’t trust your operational configuration either

— If your program can test for unsafe conditions, do so and quit
Don’t trust your own code either

— Program defensively with checks in high and low level functions
KISS - Keep it simple, stupid

— Complexity kills security, its hard enough assessing simple code

Let the Compiler Help

Turn on compiler warnings and fix problems
Easy to do on new code

Time consuming, but useful on old code
Use lint, multiple compilers

-Wall is not enough!

gcc: -Wall, -W, -02, -Werror, -Wshadow,
-Wpointer-arith, -Wconversion, -Wcast-qual,
-Wwrite-strings, -Wunreachable-code and many
more

— Many useful warning including security related
warnings such as format strings and integers

THE UNIVERSITY Usiversital i ;
WISCONSI ?‘ v 37 @ + @

18

Vulnerability Assessment and Secure

Coding Practices

Books

Viega, J. & McGraw, G. (2002). Building Secure Software:

How to Avoid Security Problems the Right Way. Addison-
Wesley.

Seacord, R. C. (2005). Secure Coding in C and C++.
Addison-Wesley.

Seacord, R. C. (2009). 7The CERT C Secure Coding
Standard, Addison-Wesley.

McGraw, G. (2006). Software security: Building Security
/In. Addison-Wesley.

Dowd, M., McDonald, J., & Schuh, J. (2006). 7he Art of

Software Assessment: Identifying and Preventing
Software Vulnerabilities. Addison-Wesley.

WISCONSIN s 38

Questions?

http://www.cs.wisc.edu/mist

xxxxxxxxxxxxx Wniversilal

Aarbiymrema
e Bareedvma 39

19

