
Vulnerability Assessment and Secure
Coding Practices

1

Vulnerability Assessment and
Secure Coding Practices

for Middlewarefor Middleware

Barton P. Miller
James A. Kupsch

Computer Sciences Department
University of Wisconsin

Elisa Heymann

Computer Architecture and
Operating Systems Department

Universitat Autònoma de Barcelona

1

CERN, Geneva, Switzerland
December 7, 2009

This research funded in part by Department of Homeland Security grant FA8750-10-2-0030 (funded through AFRL).
Past funding has been provided by NATO grant CLG 983049, National Science Foundation grant OCI-0844219, the

National Science Foundation under contract with San Diego Supercomputing Center, and National Science
Foundation grants CNS-0627501 and CNS-0716460.

Surprise Quiz

• One small function per problem
• Find as many potential vulnerabilities as

you can (there may be more than one)
• Assume:

– pointer arguments are never NULL
– strings are always NULL terminated

Aft h ill di th

2

• After each, we will discuss the answers

Vulnerability Assessment and Secure
Coding Practices

2

Problem 2
/* Safely Exec program: drop privileges to user uid and group
* gid, and use chroot to restrict file system access to jail
* directory. Also, don't allow program to run as a
* privileged user or group */

1. void ExecUid(int uid, int gid, char *jailDir,
2 char *prog char *const argv[])2. char *prog, char *const argv[])
3. {
4. if (uid == 0 || gid == 0) {
5. FailExit("ExecUid: root uid or gid not allowed");
6. }
7.
8. chroot(jailDir); /* restrict access to this dir */
9.
10. setuid(uid); /* drop privs */
11. setgid(gid);

3

11. setgid(gid);
12.
13. fprintf(LOGFILE, "Execvp of %s as uid=%d gid=%d\n",
14. prog, uid, gid);
15. fflush(LOGFILE);
16.
17. execvp(prog, argv);
18. }

Part 2 Roadmap

• Part 1: Vulnerability
assessment process
P t 2 S di

– Buffer overflows
– Injections
– Integer• Part 2: Secure coding

practices
– Introduction
– Handling errors
– Numeric parsing

Missing error detection

– Integer
– Race conditions
– Privileges
– Command line
– Environment
– Denial of service

5

– Missing error detection
– ISO/IEC 24731
– Variadic functions

– General engineering
– Compiler warnings

Vulnerability Assessment and Secure
Coding Practices

3

Discussion of the Practices

• Description of vulnerability
• Signs of presence in the code
• Mitigations
• Safer alternatives

6

Handling Errors

• If a call can fail, always check for errors
optimistic error handling (i.e. none) is bad

E h dli t t i• Error handling strategies:
– Handle locally and continue
– Cleanup and propagate the error
– Exit the application

• All APIs you use or develop, that can fail,

7

y p
must be able to report errors to the caller

• Using exceptions forces error handling

Vulnerability Assessment and Secure
Coding Practices

4

Numeric Parsing
Unreported Errors

• atoi, atol, atof, scanf family (with %u,
%i, %d, %x and %o specifiers), , p)
– Out of range values results in unspecified

behavior
– Non-numeric input returns 0
– Use strtol, strtoul, strtoll, strtoull,
strtof strtod strtold which allow error

8

strtof, strtod, strtold which allow error
detection

Missing Error Detection

• strcat, strcpy, strncat, strncpy, gets,
getpass, getwd, scanf (using %s or
%[] ith t idth ifi d)%[…] without width specified)
– Never use these
– Unable to report if buffer would overflow

(not enough information present)
– Safer alternatives exist

9

Vulnerability Assessment and Secure
Coding Practices

5

ISO/IEC 24731

Extensions for the C library:
Part 1, Bounds Checking Interface

• Functions to make the C library safer
• Meant to easily replace existing library

calls with little or no other changes
• Aborts on error or optionally reports error

10

• Very few unspecified behaviors
• All updated buffers require a size param
• http://www.open-std.org/jtcl/sc22/wg14

Buffer Overflows
• Description

– Accessing locations of a buffer outside the boundaries
of the buffer

• Common causes
– C-style strings
– Array access and pointer arithmetic in languages

without bounds checking
– Off by one errors
– Fixed large buffer sizes (make it big and hope)

11

– Fixed large buffer sizes (make it big and hope)
– Decoupled buffer pointer and its size

• If size unknown overflows are impossible to detect
• Require synchronization between the two
• Ok if size is implicitly known and every use knows it (hard)

Vulnerability Assessment and Secure
Coding Practices

6

Why Buffer Overflows
are Dangerous

• An overflow overwrites memory adjacent
to a buffer
Thi ld b• This memory could be
– Unused
– Code
– Program data that can affect operations
– Internal data used by the runtime system

12

• Common result is a crash
• Specially crafted values can be used for an

attack

Buffer Overflow of User Data
Affecting Flow of Control

char id[8];
int validId = 0; /* not valid */

id validId

gets(id); /* reads "evillogin"*/

e v i l l o g i 110
n

\0 \0 \0
id validId

\0 \0 \0 \0

13

/* validId is now 110 decimal */
if (IsValid(id)) validId = 1; /* not true */
if (validId) /* is true */

{DoPrivilegedOp();} /* gets executed */

Vulnerability Assessment and Secure
Coding Practices

7

Buffer Overflow Danger Signs:
Missing Buffer Size

• gets, getpass, getwd, and scanf family
(with %s or %[…] specifiers without width)
– Impossible to use correctly: size comes solely

from user input
– Alternatives

Unsafe Safe
gets(s) fgets(s sLen stdin)

14

gets(s) fgets(s, sLen, stdin)

getcwd(s) getwd(s, sLen)

scanf("%s", s) scanf("%100s", s)

strcat, strcpy, sprintf,
vsprintf

– Impossible for function to detect overflow
• Destination buffer size not passed

Diffi lt t f l / h k– Difficult to use safely w/o pre-checks
• Checks require destination buffer size
• Length of data formatted by printf
• Difficult & error prone
• Best incorporated in the function

P t 1 2 i t d t

15

Proper usage: concat s1, s2 into dst
If (dstSize < strlen(s1) + strlen(s2) + 1)

{ERROR("buffer overflow");}
strcpy(dst, s1);
strcat(dst, s2);

Vulnerability Assessment and Secure
Coding Practices

8

Buffer Overflow Danger Signs:
Difficult to Use and Truncation

• strncat(dst, src, n)
– n is the maximum number of chars of src to append

(trailing null also appended)(trailing null also appended)
– can overflow if n >=(dstSize-strlen(dst))

• strncpy(dst, src, n)
– Writes n chars into dst, if strlen(src)<n, it fills the

other n-strlen(src) chars with 0’s
– If strlen(src)>=n, dst is not null terminated

16

() ,

• Truncation detection not provided
• Deceptively insecure

– Feels safer but requires same careful use as strcat

Safer String Handling:
C-library functions

• snprintf(buf, bufSize, fmt, …) and
vsnprintf
– Truncation detection possible

(result >= bufSize implies truncation)
– Can be used as a safer version of strcpy and
strcat

17

Proper usage: concat s1, s2 into dst
r = snprintf(dst, dstSize, "%s%s",s1, s2);
If (r >= dstSize)

{ERROR("truncation");}

Vulnerability Assessment and Secure
Coding Practices

9

Injection Attacks

• Description
– A string constructed with user input, that is then

interpreted by another function where the string is not interpreted by another function, where the string is not
parsed as expected

• Command injection (in a shell)
• Format string attacks (in printf/scanf)
• SQL injection
• Cross-site scripting or XSS (in HTML)

• General causes

18

• General causes
– Allowing metacharacters
– Not properly quoting user data if metacharacters are

allowed

SQL Injections

• User supplied values used in SQL
command must be validated, quoted, or
prepared statements must be usedprepared statements must be used

• Signs of vulnerability
– Uses a database mgmt system (DBMS)
– Creates SQL statements at run-time
– Inserts user supplied data directly into

statement without validation

19

statement without validation

Vulnerability Assessment and Secure
Coding Practices

10

SQL Injections:
attacks and mitigations

• Dynamically generated SQL without
validation or quoting is vulnerable
$u = " '; drop table t --";
$sth = $dbh->do("select * from t where u = '$u'");

Database sees 2 statements:

select * from t where u = ' '; drop table t --’

• Use prepared statements to mitigate
$ $ ($)

20

$sth = $dbh->do("select * from t where u = ?", $u);

– SQL statement template and value sent to
database

– No mismatch between intention and use

21

Vulnerability Assessment and Secure
Coding Practices

11

Integer Vulnerabilities
• Description

– Many programming languages allow silent loss of
integer data without warning due tog g

• Overflow
• Truncation
• Signed vs. unsigned representations

– Code may be secure on one platform, but silently
vulnerable on another, due to different underlying
integer types.

G l

22

• General causes
– Not checking for overflow
– Mixing integer types of different ranges
– Mixing unsigned and signed integers

Integer Danger Signs

• Mixing signed and unsigned integers
• Converting to a smaller integer
• Using a built-in type instead of the API’s

typedef type
• However built-ins can be problematic too:
size_t is unsigned, ptrdiff_t is signed

23

• Assigning values to a variable of the
correct type before data validation
(range/size check)

Vulnerability Assessment and Secure
Coding Practices

12

Race Conditions
• Description

– A race condition occurs when multiple threads of
control try to perform a non-atomic operation on a y p p
shared object, such as

• Multithreaded applications accessing shared data
• Accessing external shared resources such as the file system

• General causes
– Threads or signal handlers without proper

synchronization

24

– Non-reentrant functions (may have shared variables)
– Performing non-atomic sequences of operations on

shared resources (file system, shared memory) and
assuming they are atomic

File System Race Conditions

• A file system maps a path name of a file or other
object in the file system, to the internal identifier
(device and inode)(device and inode)

• If an attacker can control any component of the
path, multiple uses of a path can result in
different file system objects

• Safe use of path
eliminate race condition

25

– eliminate race condition
• use only once
• use file descriptor for all other uses

– verify multiple uses are consistent

Vulnerability Assessment and Secure
Coding Practices

13

File System Race Examples

• Check properties of a file then open
Bad: access or stat open
S f fSafe: open fstat

• Create file if it doesn’t exist
Bad: if stat fails creat(fn, mode)
Safe: open(fn, O_CREAT|O_EXCL, mode)

– Never use O CREAT without O EXCLNever use O_CREAT without O_EXCL
– Better still use safefile library

• http://www.cs.wisc.edu/mist/safefile
James A. Kupsch and Barton P. Miller, “How to Open a File and Not Get
Hacked,” 2008 Third International Conference on Availability, Reliability and
Security (ARES), Barcelona, Spain

26

Race Condition Temporary Files
• Temporary directory (/tmp) is a dangerous area

of the file system
– Any process can create a directory entry thereAny process can create a directory entry there
– Usually has the sticky bit set, so only the owner can

delete their files
• Ok to create true temporary files in /tmp

– Create using mkstemp, unlink, access through
returned file descriptor

– Storage vanishes when file descriptor is closed

27

Storage vanishes when file descriptor is closed
• Safe use of /tmp directory

– create a secure directory in /tmp
– use it to store files

Vulnerability Assessment and Secure
Coding Practices

14

Race Condition Examples

• Your Actions Attackers Action
s=strdup("/tmp/zXXXXXX")
tempnam(s)

time

p ()
// s now "/tmp/zRANDOM" link = "/etc/passwd"

file = "/tmp/zRANDOM"
symlink(link, file)

f = fopen(s, "w+")
// writes now update
// /etc/passwd

28

Safe Version

fd = mkstemp(s)
f = fdopen(fd, "w+")

Not Dropping Privilege

• Description
– When a program running with a privileged status

(running as root for instance) creates a process or (running as root for instance), creates a process or
tries to access resources as another user

• General causes
– Running with elevated privilege
– Not dropping all inheritable process attributes such as

uid, gid, euid, egid, supplementary groups, open file

29

descriptors, root directory, working directory
– not setting close-on-exec on sensitive file descriptors

Vulnerability Assessment and Secure
Coding Practices

15

Not Dropping Privilege: chroot

• chroot changes the root directory for the
process, files outside cannot be accessed
Only root can use h t• Only root can use chroot

• Need to chdir("/") to somewhere
underneath the new root directory,
otherwise relative pathnames are not
restricted

30

• Need to recreate all support files used by
program in new root: /etc, libraries, …

Insecure Permissions

• Set umask when using mkstemp or fopen
– File permissions need to be secure from

ti t d t ticreation to destruction

• Don’t write sensitive information into
insecure locations (directories need to
have restricted permission to prevent
replacing files)

31

replacing files)
• Executables, libraries, configuration, data

and log files need to be write protected

Vulnerability Assessment and Secure
Coding Practices

16

Insecure Permissions

• If a file controls what can be run as a
privileged, users that can update the file

 i l t t th i il d are equivalent to the privileged user
File should be:
– Owned by privileged user, or
– Owned by administrative account

• No login

32

No login
• Never executes anything, just owns files

• DBMS accounts should be granted minimal
privileges for their task

Trusted Directory
• A trusted directory is one where only trusted

users can update the contents of anything in the
directory or any of its ancestors all the way to the y y y
root

• A trusted path needs to check all components of
the path including symbolic links referents for
trust

• A trusted path is immune to TOCTOU attacks
from untrusted users

33

from untrusted users
• safefile library

– http://www.cs.wisc.edu/mist/safefile
– Determines trust based on trusted users & groups

Vulnerability Assessment and Secure
Coding Practices

17

Command Line

• Description
– Convention is that argv[0] is the path to the

t blexecutable
– Shells enforce this behavior, but it can be set

to anything if you control the parent process

• General causes
– Using argv[0] as a path to find other files

34

g g [] p
such as configuration data

– Process needs to be setuid or setgid to be a
useful attack

Environment

• List of (name, value) string pairs
• Available to program to read
• Used by programs, libraries and runtime

environment to affect program behavior
• Mitigations:

– Clean environment to just safe names & values
– Don’t assume the length of strings
– Avoid PATH, LD_LIBRARY_PATH, and other

variables that are directory lists used to look
for execs and libs

35

Vulnerability Assessment and Secure
Coding Practices

18

General Software Engineering
• Don’t trust user data

– You don’t know where that data has been

• Don’t trust your own client software either
– It may have been modified, so always revalidate data at the

server.

• Don’t trust your operational configuration either
– If your program can test for unsafe conditions, do so and quit

• Don’t trust your own code either
– Program defensively with checks in high and low level functions

• KISS Keep it simple stupid

36

• KISS - Keep it simple, stupid
– Complexity kills security, its hard enough assessing simple code

Let the Compiler Help
• Turn on compiler warnings and fix problems
• Easy to do on new code

Ti i b t f l ld d• Time consuming, but useful on old code
• Use lint, multiple compilers
• -Wall is not enough!

gcc: -Wall, -W, -O2, -Werror, -Wshadow,
-Wpointer-arith, -Wconversion, -Wcast-qual,

37

-Wwrite-strings, -Wunreachable-code and many
more
– Many useful warning including security related

warnings such as format strings and integers

Vulnerability Assessment and Secure
Coding Practices

19

Books
• Viega, J. & McGraw, G. (2002). Building Secure Software:

How to Avoid Security Problems the Right Way. Addison-
Wesley.

• Seacord, R. C. (2005). Secure Coding in C and C++.
Addison-Wesley.

• Seacord, R. C. (2009). The CERT C Secure Coding
Standard, Addison-Wesley.

• McGraw, G. (2006). Software security: Building Security
In Addison-Wesley

38

In. Addison Wesley.
• Dowd, M., McDonald, J., & Schuh, J. (2006). The Art of

Software Assessment: Identifying and Preventing
Software Vulnerabilities. Addison-Wesley.

Questions?

39

http://www.cs.wisc.edu/mist

