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Surprise Quiz

• One small function per problem
• Find as many potential vulnerabilities as 

you can (there may be more than one)
• Assume:

– pointer arguments are never NULL
– strings are always NULL terminated

Aft  h   ill di  th  
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• After each, we will discuss the answers
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Problem 2
/* Safely Exec program: drop privileges to user uid and group
* gid, and use chroot to restrict file system access to jail
* directory.  Also, don't allow program to run as a
* privileged user or group   */

1. void ExecUid(int uid, int gid, char *jailDir,
2 char *prog char *const argv[])2. char *prog, char *const argv[])
3. {
4. if (uid == 0 || gid == 0)  {
5. FailExit("ExecUid: root uid or gid not allowed");
6. }
7.
8. chroot(jailDir);  /* restrict access to this dir */
9.
10. setuid(uid);      /* drop privs */
11. setgid(gid);
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11. setgid(gid);
12.
13. fprintf(LOGFILE, "Execvp of %s as uid=%d gid=%d\n",
14. prog, uid, gid);
15. fflush(LOGFILE);
16.
17. execvp(prog, argv);
18. }

Part 2 Roadmap

• Part 1: Vulnerability 
assessment process
P t 2  S  di  

– Buffer overflows
– Injections
– Integer• Part 2: Secure coding 

practices
– Introduction
– Handling errors
– Numeric parsing

Missing error detection

– Integer
– Race conditions
– Privileges
– Command line
– Environment
– Denial of service
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– Missing error detection
– ISO/IEC 24731
– Variadic functions

– General engineering
– Compiler warnings
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Discussion of the Practices

• Description of vulnerability
• Signs of presence in the code
• Mitigations
• Safer alternatives
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Handling Errors

• If a call can fail, always check for errors
optimistic error handling (i.e. none) is bad

E  h dli  t t i• Error handling strategies:
– Handle locally and continue
– Cleanup and propagate the error
– Exit the application

• All APIs you use or develop, that can fail, 
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y p
must be able to report errors to the caller

• Using exceptions forces error handling
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Numeric Parsing
Unreported Errors

• atoi, atol, atof, scanf family (with %u, 
%i, %d, %x and %o specifiers), , p )
– Out of range values results in unspecified 

behavior
– Non-numeric input returns 0
– Use strtol, strtoul, strtoll, strtoull, 
strtof  strtod  strtold which allow error 
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strtof, strtod, strtold which allow error 
detection

Missing Error Detection

• strcat, strcpy, strncat, strncpy, gets, 
getpass, getwd, scanf (using %s or
%[ ] ith t idth ifi d)%[…] without width specified)
– Never use these
– Unable to report if buffer would overflow

(not enough information present)
– Safer alternatives exist

9
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ISO/IEC 24731

Extensions for the C library:
Part 1, Bounds Checking Interface

• Functions to make the C library safer
• Meant to easily replace existing library 

calls with little or no other changes
• Aborts on error or optionally reports error
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• Very few unspecified behaviors
• All updated buffers require a size param
• http://www.open-std.org/jtcl/sc22/wg14

Buffer Overflows
• Description

– Accessing locations of a buffer outside the boundaries 
of the buffer

• Common causes
– C-style strings
– Array access and pointer arithmetic in languages 

without bounds checking
– Off by one errors
– Fixed large buffer sizes (make it big and hope)
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– Fixed large buffer sizes (make it big and hope)
– Decoupled buffer pointer and its size

• If size unknown overflows are impossible to detect
• Require synchronization between the two
• Ok if size is implicitly known and every use knows it (hard)
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Why Buffer Overflows
are Dangerous

• An overflow overwrites memory adjacent 
to a buffer
Thi   ld b• This memory could be
– Unused
– Code
– Program data that can affect operations
– Internal data used by the runtime system 
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• Common result is a crash
• Specially crafted values can be used for an 

attack

Buffer Overflow of User Data 
Affecting Flow of Control

char id[8];
int  validId = 0;   /* not valid */

id validId

gets(id); /* reads "evillogin"*/

e v i l l o g i 110
n

\0 \0 \0
id validId

\0 \0 \0 \0
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/* validId is now 110 decimal */
if (IsValid(id)) validId = 1; /* not true */
if (validId)                  /* is true  */

{DoPrivilegedOp();}   /* gets executed */
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Buffer Overflow Danger Signs: 
Missing Buffer Size

• gets, getpass, getwd, and scanf family 
(with %s or %[…] specifiers without width)
– Impossible to use correctly: size comes solely 

from user input
– Alternatives

Unsafe Safe
gets(s) fgets(s sLen stdin)
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gets(s) fgets(s, sLen, stdin)

getcwd(s) getwd(s, sLen)

scanf("%s", s) scanf("%100s", s)

strcat, strcpy, sprintf, 
vsprintf

– Impossible for function to detect overflow
• Destination buffer size not passed

Diffi lt t   f l  /  h k– Difficult to use safely w/o pre-checks
• Checks require destination buffer size
• Length of data formatted by printf
• Difficult & error prone
• Best incorporated in the function

P   t 1  2 i t  d t
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Proper usage: concat s1, s2 into dst
If (dstSize < strlen(s1) + strlen(s2) + 1)

{ERROR("buffer overflow");}
strcpy(dst, s1);
strcat(dst, s2);
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Buffer Overflow Danger Signs: 
Difficult to Use and Truncation

• strncat(dst, src, n)
– n is the maximum number of chars of src to append 

(trailing null also appended)(trailing null also appended)
– can overflow if   n >=(dstSize-strlen(dst))

• strncpy(dst, src, n)
– Writes n chars into dst, if strlen(src)<n, it fills the 

other n-strlen(src) chars with 0’s
– If strlen(src)>=n,  dst is not null terminated

16

( ) ,

• Truncation detection not provided
• Deceptively insecure

– Feels safer but requires same careful use as strcat

Safer String Handling:
C-library functions

• snprintf(buf, bufSize, fmt, …) and 
vsnprintf
– Truncation detection possible

(result >= bufSize implies truncation)
– Can be used as a safer version of strcpy and 
strcat

17

Proper usage: concat s1, s2 into dst
r = snprintf(dst, dstSize, "%s%s",s1, s2);
If (r >= dstSize)

{ERROR("truncation");}
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Injection Attacks

• Description
– A string constructed with user input, that is then 

interpreted by another function  where the string is not interpreted by another function, where the string is not 
parsed as expected

• Command injection (in a shell)
• Format string attacks (in printf/scanf)
• SQL injection
• Cross-site scripting or XSS (in HTML)

• General causes

18

• General causes
– Allowing metacharacters
– Not properly quoting user data if metacharacters are 

allowed

SQL Injections

• User supplied values used in SQL 
command must be validated, quoted, or 
prepared statements must be usedprepared statements must be used

• Signs of vulnerability
– Uses a database mgmt system (DBMS)
– Creates SQL statements at run-time
– Inserts user supplied data directly into 

statement without validation

19

statement without validation
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SQL Injections:
attacks and mitigations

• Dynamically generated SQL without 
validation or quoting is vulnerable
$u = " '; drop table t --";
$sth = $dbh->do("select * from t where u = '$u'");

Database sees 2 statements:

select * from t where u = ' '; drop table t --’

• Use prepared statements to mitigate
$ $ ( $ )

20

$sth = $dbh->do("select * from t where u = ?", $u);

– SQL statement template and value sent to 
database

– No mismatch between intention and use

21
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Integer Vulnerabilities
• Description

– Many programming languages allow silent loss of 
integer data without warning due tog g

• Overflow
• Truncation
• Signed vs. unsigned representations

– Code may be secure on one platform, but silently 
vulnerable on another, due to different underlying 
integer types.

G l 
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• General causes
– Not checking for overflow
– Mixing integer types of different ranges
– Mixing unsigned and signed integers

Integer Danger Signs

• Mixing signed and unsigned integers
• Converting to a smaller integer
• Using a built-in type instead of the API’s 

typedef type
• However built-ins can be problematic too: 
size_t is unsigned, ptrdiff_t is signed

23

• Assigning values to a variable of the 
correct type before data validation 
(range/size check)
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Race Conditions
• Description

– A race condition occurs when multiple threads of 
control try to perform a non-atomic operation on a y p p
shared object, such as

• Multithreaded applications accessing shared data
• Accessing external shared resources such as the file system

• General causes
– Threads or signal handlers without proper 

synchronization

24

– Non-reentrant functions (may have shared variables)
– Performing non-atomic sequences of operations on 

shared resources (file system, shared memory) and 
assuming they are atomic

File System Race Conditions

• A file system maps a path name of a file or other 
object in the file system, to the internal identifier 
(device and inode)(device and inode)

• If an attacker can control any component of the 
path, multiple uses of a path can result in 
different file system objects

• Safe use of path
eliminate race condition

25

– eliminate race condition
• use only once
• use file descriptor for all other uses

– verify multiple uses are consistent
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File System Race Examples

• Check properties of a file then open
Bad:   access or stat open
S f   fSafe:  open fstat

• Create file if it doesn’t exist
Bad:   if stat fails creat(fn, mode)
Safe:  open(fn, O_CREAT|O_EXCL, mode)

– Never use O CREAT without O EXCLNever use O_CREAT without O_EXCL
– Better still use safefile library

• http://www.cs.wisc.edu/mist/safefile
James A. Kupsch and Barton P. Miller, “How to Open a File and Not Get 
Hacked,” 2008 Third International Conference on Availability, Reliability and 
Security (ARES), Barcelona, Spain
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Race Condition Temporary Files
• Temporary directory (/tmp) is a dangerous area 

of the file system
– Any process can create a directory entry thereAny process can create a directory entry there
– Usually has the sticky bit set, so only the owner can 

delete their files
• Ok to create true temporary files in /tmp

– Create using mkstemp, unlink, access through 
returned file descriptor

– Storage vanishes when file descriptor is closed

27

Storage vanishes when file descriptor is closed
• Safe use of /tmp directory

– create a secure directory in /tmp
– use it to store files
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Race Condition Examples

• Your Actions Attackers Action
s=strdup("/tmp/zXXXXXX")
tempnam(s)

time

p ( )
// s now "/tmp/zRANDOM" link = "/etc/passwd"

file = "/tmp/zRANDOM"
symlink(link, file)

f = fopen(s, "w+")
// writes now update
// /etc/passwd

28

Safe Version

fd = mkstemp(s)
f = fdopen(fd, "w+")

Not Dropping Privilege

• Description
– When a program running with a privileged status 

(running as root for instance)  creates a process or (running as root for instance), creates a process or 
tries to access resources as another user 

• General causes
– Running with elevated privilege
– Not dropping all inheritable process attributes such as 

uid, gid, euid, egid, supplementary groups, open file 

29

descriptors, root directory, working directory
– not setting close-on-exec on sensitive file descriptors
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Not Dropping Privilege: chroot

• chroot changes the root directory for the 
process, files outside cannot be accessed
Only root can use h t• Only root can use chroot

• Need to chdir("/") to somewhere 
underneath the new root directory, 
otherwise relative pathnames are not 
restricted

30

• Need to recreate all support files used by 
program in new root: /etc, libraries, …

Insecure Permissions

• Set umask when using mkstemp or fopen
– File permissions need to be secure from 

ti  t  d t ticreation to destruction

• Don’t write sensitive information into 
insecure locations (directories need to 
have restricted permission to prevent 
replacing files)

31

replacing files)
• Executables, libraries, configuration, data 

and log files need to be write protected
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Insecure Permissions

• If a file controls what can be run as a 
privileged, users that can update the file 

 i l t t  th  i il d are equivalent to the privileged user
File should be:
– Owned by privileged user, or
– Owned by administrative account

• No login

32

No login
• Never executes anything, just owns files

• DBMS accounts should be granted minimal 
privileges for their task 

Trusted Directory
• A trusted directory is one where only trusted 

users can update the contents of anything in the 
directory or any of its ancestors all the way to the y y y
root

• A trusted path needs to check all components of 
the path including symbolic links referents for 
trust

• A trusted path is immune to TOCTOU attacks 
from untrusted users

33

from untrusted users
• safefile library

– http://www.cs.wisc.edu/mist/safefile
– Determines trust based on trusted users & groups
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Command Line

• Description
– Convention is that argv[0] is the path to the 

t blexecutable
– Shells enforce this behavior, but it can be set 

to anything if you control the parent process

• General causes
– Using argv[0] as a path to find other files 

34

g g [ ] p
such as configuration data

– Process needs to be setuid or setgid to be a 
useful attack

Environment

• List of (name, value) string pairs
• Available to program to read
• Used by programs, libraries and runtime 

environment to affect program behavior
• Mitigations:

– Clean environment to just safe names & values
– Don’t assume the length of strings
– Avoid PATH, LD_LIBRARY_PATH, and other 

variables that are directory lists used to look 
for execs and libs

35
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General Software Engineering
• Don’t trust user data

– You don’t know where that data has been

• Don’t trust your own client software either
– It may have been modified, so always revalidate data at the 

server.

• Don’t trust your operational configuration either
– If your program can test for unsafe conditions, do so and quit

• Don’t trust your own code either
– Program defensively with checks in high and low level functions

• KISS Keep it simple  stupid

36

• KISS - Keep it simple, stupid
– Complexity kills security, its hard enough assessing simple code

Let the Compiler Help
• Turn on compiler warnings and fix problems
• Easy to do on new code

Ti  i  b t f l  ld d• Time consuming, but useful on old code
• Use lint, multiple compilers
• -Wall is not enough!

gcc: -Wall, -W, -O2, -Werror, -Wshadow,
-Wpointer-arith, -Wconversion, -Wcast-qual,

37

-Wwrite-strings, -Wunreachable-code and many 
more
– Many useful warning including security related 

warnings such as format strings and integers
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In. Addison Wesley. 
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Questions?
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http://www.cs.wisc.edu/mist


