
1

Vulnerability Assessment and Secure
Coding Practices
for Middlewaref M w

Barton P. Miller
James A. Kupsch

Computer Sciences Department
University of Wisconsin

Elisa Heymann

Computer Architecture and
Operating Systems Department

Universitat Autònoma de Barcelona

1

CERN, Geneva, Switzerland
December 7, 2009

This research funded in part by Department of Homeland Security grant FA8750-10-2-0030 (funded through AFRL).
Past funding has been provided by NATO grant CLG 983049, National Science Foundation grant OCI-0844219, the

National Science Foundation under contract with San Diego Supercomputing Center, and National Science
Foundation grants CNS-0627501 and CNS-0716460.

Roadmap

› Part 1: Vulnerability Assessment Process› Part 1: Vulnerability Assessment Process

› Part 2: Secure Coding Practices

2

2

Key Issues for Security

› Need independent assessment
f i h l k h – Software engineers have long known that

testing groups must be independent of
development groups

› Need an assessment process that is NOT
based solely on known vulnerabilities

h h ll f d

3

– Such approaches will not find new types
and variations of attacks

Key Issues for Security
› Automated Analysis Tools have Serious

Limitations
– While they help find some local errors – While they help find some local errors,

they
• MISS significant vulnerabilities (false

negatives)
• Produce voluminous reports (false

positives)

4

› Programmers must be security-aware
– Designing for security and the use of

secure practices and standards does not
guarantee security

3

Addressing these Issues

› We must evaluate the security of our code
The vulnerabilities are there and we – The vulnerabilities are there and we
want to find them first

› Assessment isn’t cheap
– Automated tools create an illusion of

security
› You can’t take shortcuts

5

› You can t take shortcuts
– Even if the development team is good at

testing, they can’t do an effective
assessment of their own code

Addressing these Issues

› First Principles Vulnerability Assessment (FPVA)
A t t th t f iti l – A strategy that focuses on critical resources

– A strategy that is not based solely on known
vulnerabilities

› We need to integrate assessment and
remediation into the software development
process

6

process
– We have to be prepared to respond to the

vulnerabilities we find

4

Goal of FPVA
› Understand a software system to focus

search for security problems
› Find vulnerabilities
› Make the software more secure

“A vulnerability is a defect or weakness in system
security procedures, design, implementation, or
internal controls that can be exercised and result in a

7

internal controls that can be exercised and result in a
security breach or violation of security policy.”

- Gary McGraw, Software Security
i.e., a bad thing

First Principles Vulnerability Assessment

Step 1: Architectural Analysis Step 1: Architectural Analysis
Step 2: Resource Identification
Step 3: Trust & Privilege Analysis
Step 4: Component Evaluation
Step 5: Dissemination of Results

8

5

Studied Systems
Condor, University of Wisconsin

Batch queuing workload management system
SRB, SDSC

Storage Resource Broker - data grid
MyProxy, NCSA

Credential Management System
glExec, Nikhef (in progress)

Identity mapping service
CrossBroker, Universitat Autònoma de Barcelona (in progress)

Resource Manager for Parallel and Interactive Applications
Gratia Condor Probe, NCSA (in progress)

Feeds Condor Usage into Gratia Accounting System
C nd Q ill Uni sit f Wis nsin (in p ss)

9

Condor Quill, University of Wisconsin (in progress)
DBMS Storage of Condor Operational and Historical Data

Wireshark, wireshark.org (in progress)
Network Protocol Analyzer

Condor Privilege Separation, University of Wisconsin (soon)
Restricted Identity Switching Module

First Principles Vulnerability Assessment
Understanding the System

Step 1: Architectural AnalysisStep 1: Architectural Analysis
– Functionality and structure of the

system, major components (modules,
threads, processes), communication
channels

– Interactions among components and

10

– Interactions among components and
with users

6

Step 1: Architectural Analysis
User Supplied Data

› All attacks ultimately arise from attacker
() i t d d t(user) communicated data

› If not, your system is malware: mere
installation causes a security violation

› Attack surface: Interfaces available to the
attacker

11

› Important to know where the system gets
user supplied data

› What data can users inject into the system

Step 1: Architectural Analysis

› Create a detailed big picture view of the
system

› Document and diagram
– What processes/hosts exist and their

function
– How users interact with them
– How executables interact with each other

12

7

Step 1: Architectural Analysis
External Services Used

› How are external programs used
› External services

– Database (DBMS, LDAP, DNS, …)
– Web server
– Application server
– Other

E l bl l h d

13

› External executables launched
– Signs in the code: popen system exec*

Step 1: Architectural Analysis
Process Communication Channels

› What exists between…
– Servers
– Client and server
– Client/Server and external programs

• DBMS
• DNS
• LDAP

14

• Kerberos
• File services: NFS AFS ftp http …
• Helper applications

› Shows interaction between components

8

Step 1: Architectural Analysis
Communication Methods

› OS provides a large variety of
communication methods
– Command line – Environment
– Files – Sockets
– Creating processes – Signals
– IPC – Directories

Pipes Symbolic links

15

• Pipes – Symbolic links
• FIFO's or named pipes
• System V IPC
• Memory mapped files

Step 1: Architectural Analysis
Command Line

› Null-terminated array of strings passed to
a starting process from its parenta starting process from its parent

› Convention is that argv[0] is the path to
executable file

› Signs in code
– C/C++: argc argv

P l $0 @

16

– Perl: $0 @ARGV
– Sh: $0 $1 $2… $# $@ $*
– Csh: $0 argv

9

Step 1: Architectural Analysis
Sockets

› Creates a communication path
– processes on same hostp
– between hosts using protocols such as TCP/IP

› Can be stream or message based
› Signs in code

– C/C++: socket bind connect listen
accept socketpair send sendto sendmsg
recv recvfrom recvmsg getpeername

17

recv recvfrom recvmsg getpeername
getsockname setsockopt getsockopt
shutdown

Step 1: Architectural Analysis
IPC

› Inter- and Intra-host communication methods
› Some can pass file descriptors between processesp p p
› Signs in code:

– Pipes: pipe
– SysV Message Q: msgget msgctl msgsnd
msgrcv

– SysV Semaphore: semget shmctl semop
S V Sh d M h h l h

18

– SysV Shared Mem: shmget shmctl shmat
shmdt

– Memory mapped files: mmap

10

Step 1: Architectural Analysis
condor & root

OS privileges

user

Condor execute host
master

negotiator collector

1. fork 1. fork

5. Negotiator
cycle

master

Condor submit host

schedd

1. fork

master

Condor execute host

starter

1. fork

cycle

2. machine
ClassAd

4. job
ClassAd

5. Negotiator
cycle

6. Report
match

6. Report
match

19

shadow

submit

3. submit job
ClassAd

8. fork

startd

job

8. fork

10. start job

master

Stork server host

stork_server

1. fork

7. claim host

9. establish
channel

Step 1: Architectural Analysis› SRB
srb
postgresql

OS privileges

user SRB master

SRB server host

SRB client process

SRB client host

MCAT PostgreSQL

MCAT host

SRB agent

1. connect

2. fork

3 authenticate

20

3. authenticate
3&4. use MCAT

4. do work

11

First Principles Vulnerability Assessment
Understanding the System

Step 2: Resource IdentificationStep 2: Resource Identification
– Key resources accessed by each

component
– Operations allowed on those resources

21

Step 2: Resource Analysis
› A resource is an object that is useful to a user of

the system and is controlled by the system
– Data

• files
• DBMS
• memory

– Physical entities
• Disk space

22

• CPU cycles
• Network bandwidth
• Attached devices (sensors, controllers)

12

Step 2: Resource Identification
Documenting Resources

› What resources exist in the system› What resources exist in the system
› What executables/hosts control the

resource
› What operations are allowed
› What does an attacker gaining access to

th r s urc impl

23

the resource imply

Step 2: Resource Identification
Files

› Represented by a path
› File descriptors represent files in program› File descriptors represent files in program

– From opening or creating a file
– Inherited from parent process

› Contents can be data, configuration,
executable code, library code, scripts

24

› Signs in code:
– C/C++: open creat fopen dlopen
*stream

13

Step 2: Resource Identification
Standard File Descriptors

› Convention is creating process opens file
descriptors 0, 1 and 2 for use by the
created process to be used as standard in created process to be used as standard in,
out, and err

› Functions and libraries often implicitly use
these and expect them to be opened

› Signs in code
– C/C++: stdin stdout stderr

25

C/C++: stdin stdout stderr
STDIN_FILENO STDOUT_FILENO
STDERR_FILENO getchar gets scanf
printf vprintf vscanf cin cout
cerr

Step 2: Resource Identification
Directories

› List of named file system objects
› Operations:

G t li t f t i– Get list of entries
– Create entry
– Rename entry
– Delete entry

› Entries have metadata like type, size, and owner
› Signs in code:

26

› Signs in code:
– C/C++: opendir readdir closedir creat
open (with O_CREAT) fdopen mkdir mkfifo
mknod symlink link unlink remove
rename rmdir

14

Step 2: Resource Identification
Symbolic Links

› File system object that contains a path
(referent)

› When evaluating a path the operating
system follows the referent in the link

› Operations:
– Create symbolic link (can’t modify)
– Read referent

27

› Signs in code:
– C/C++: implicitly in any function taking a

path, symlink readlink

Step 2: Resource Identification

condor

OS privileges

root
user

generic Condor daemon

(a) Common Resources on All Condor Hosts
ckpt_server

(b) Unique Condor Checkpoint Server Resources

Condor
Binaries &
Libraries

Condor
Config

etc
Operational

Data &
Run-time

Config Files

spool
Operational

Log Files

log

Checkpoint Directory
ckpt

(d) Unique Condor Submit Resources

shadow

(c) Unique Condor Execute Resources

User Job starter

Send and Receive
Checkpoints
(with Standard
Universe Jobs)

28 User’s Files
user

Job Execution
Directories

execute

System Call
Forwarding and

Remove I/O
(with Standard
Universe Jobs)

15

Step 2: Resource Identification
› SRB

srb
postgresql

OS privileges

user
SRB master & agents

SRB server host

SRB client process

SRB client host

MCAT PostgreSQL

MCAT host

29 db config files db data store

SRB data
Store 1

SRB config files

SRB data
Store 2

client home dir
& config files

SRB tape
storage

First Principles Vulnerability Assessment
Understanding the System

Step 3: Trust & Privilege AnalysisStep 3: Trust & Privilege Analysis
– How components are protected and who

can access them
– Privilege level at which each component

runs
T st d l ti n

30

– Trust delegation

16

Step 3: Trust & Privilege Analysis
Process Attributes

› What user/group is the process started as
› Is the process setuid/setgid
› Any unusual process attributes

– chroot

– Process limits
– Uses capabilities

31

Uses capabilities
› uid/gid switching
› uid/gid sensitive behavior

Step 3: Trust & Privilege Analysis

› Privilege is the authorization for a user to
p f m n p ti n n sperform an operation on a resource

› Role is a set of privileges assigned to users
to create classes of users such as admin

› Authentication
– Is it performed correctly and securely

32

– If an attacker can authenticate as
another user they gain their privileges

17

Step 3: Trust & Privilege Analysis
Privileges in the System

› What privileges exist in the system› What privileges exist in the system
› Do they map appropriately to operations on

resources
› Are they fine grained enough
› How are they enforced

33

Step 3: Trust & Privilege Analysis
External Privilege Systems

› System used: OS, DBMS, …
 d i il d› Accounts and privileges used

› Purpose of each account
› Does the program use external privileges

to enforce its privilege model
› Are minimal privileges used

34

p g
› Use of root or admin accounts require

special attention

18

Step 3: Trust & Privilege Analysis
Trust

› An executable trusts another when
– It relies on a behavior in the otherIt relies on a behavior in the other
– Doesn't or can't verify the behavior

› Implicit trust
– The operating system
– Process with root privilege on the same host

• they can do anything

35

– Processes with same uid on the same host
• they can do anything to each other

– All the code in your executable including
libraries

Step 3: Trust & Privilege Analysis
Bad trust

› Not validating data from another trust
domain for proper form (form length domain for proper form (form, length,
range)

› Bad assumptions
– User supplied data is in proper form
– Data passed through client is unchanged

36

• Need a cryptographic signature
• Happens with hidden input field and cookies

in HTML

19

Step 3: Trust & Privilege Analysis
More Bad Trust

› Bad assumptions (cont)› Bad assumptions (cont.)
– Client validated data

• Client can be rewritten or replaced
• Good to validate on the client, but server

validation is required
› Not validating data from trusted processes

37

› Not validating data from trusted processes
– Allows an attack to spread
– Not defense in depth

First Principles Vulnerability Assessment
Search for Vulnerabilities

Step 4: Component Evaluation
E i i i l i d h– Examine critical components in depth

– Guide search using:
Diagrams from steps 1-3
Knowledge of vulnerabilities

– Helped by Automated scanning tools (!)

38

20

Step 4: Component Evaluation
Categories of Vulnerabilities

› Design Flaws
– Problems inherent in the design Occur aboutg
– Hard to automate discovery

› Implementation Bugs
– Improper use of the programming language, or

of a library API
– Localized in the code

› Operational vulnerabilities

equally

39

Operat onal ulnerab l t es
– Configuration or environment

› Social Engineering
– Valid users tricked into attacking

Step 4: Component Evaluation
Many Types of Vulnerabilities

Buffer overflows Race conditionsff f
Injection attacks

Command injection
(in a shell)

Format string attacks
(in printf/scanf)

SQL injection
C ss sit s iptin

Not properly dropping
privilege

Insecure permissions
Denial of service
Information leaks
Lack of integrity checks

k f h

40

Cross-site scripting or
XSS
(in HTML)

Directory traversal
Integer vulnerabilities

Lack of authentication
Lack of authorization

21

Step 4: Component Evaluation
Focusing the Search

› It's impossible to completely analyze a system for
vulnerabilities
F i i l d hi k f › From critical resources and try to think of ways an
attack can be realized

› From vulnerabilities can occur in the code to
resources

› Look for similar problems to prior security
problems

› Focus on subsystem/resources that are

41

› Focus on subsystem/resources that are
– Important – Security related
– Poorly written – Poorly tested

(little used)
– Developer/Testing functionality

Step 4: Component Evaluation
Process Configuration

› How is an executable configured
– Configuration fileConfiguration file
– Hard coded
– Other

› What can be configured
– How does it affect the application
– Often reveals functional and architectural

42

information

22

Step 4: Component Evaluation
Communication Methods

› OS provides a large variety of
communication methods
– Command line – Environment
– Files – Sockets
– Creating processes – Signals
– IPC – Directories

Pipes Symbolic links

43

• Pipes – Symbolic links
• FIFO's or named pipes
• System V IPC
• Memory mapped files

First Principles Vulnerability Assessment
Taking Actions

Step 5: Dissemination of Results
R l bili i– Report vulnerabilities

– Interaction with developers
– Disclosure of vulnerabilities

44

23

Step 5: Dissemination of Results
Vulnerability Report

› One report per vulnerability› One report per vulnerability
› Provide enough information for developers

to reproduce and suggest mitigations
› Written so that a few sections can be

removed and the abstracted report is still
useful to users without revealing too much

45

useful to users without revealing too much
information to easily create an attack.

First Principles Vulnerability Assessment
Taking Actions

Step 5: Dissemination of Results

46

24

Step 5: Dissemination of Results
Vulnerability Report Items

› Summary
› Affected version(s) and platform› Affected version(s) and platform
› Fixed version(s)
› Availability - is it known or being exploited
› Access required - what type of access does

an attacker require: local/remote host?
Authenticated? Special privileges?

47

p p g
› Effort required (low/med/high) - what

type of skill and what is the probability of
success

Step 5: Dissemination of Results
Vulnerability Report Items

› Impact/Consequences (low/med/high) -
how does it affect the system: minor
i f ti l k i l i i t information leak is low, gaining root access
on the host is high

› Only in full report
– Full details - full description of

vulnerability and how to exploit it
– Cause root problem that allows it

48

– Cause - root problem that allows it
– Proposed fix - proposal to eliminate

problem
– Actual fix - how it was fixed

25

Step 5: Dissemination of Results
Vulnerability Disclosure Process

› Disclose vulnerability reports to developers› Disclose vulnerability reports to developers
› Allow developers to mitigate problems in a

release

Now here’s the really hard part:
› Publish abstract disclosures in cooperation

ith d l Wh ?

49

with developers. When?
› Publish full disclosures in cooperation with

developers. When?

Summary of Results
First Principles Vulnerability Assessment

Technique has been extremely successfulTechnique has been extremely successful
– found critical problems
– helped groups redesign software
– changed their development practices and

release cycle management

50

First Principles Vulnerability Assessment (FPVA) white paper:
http://www.cs.wisc.edu/mist/papers/VA.pdf

26

Our Work -- Summary

Assess: We continue to assess new
software systems

Train: We present tutorials and white
papers, and continue to develop new
educational materials

Research: Our results provide the

51

p
foundation for new research to make FPVA
less labor-intensive and improve quality of
automated code analysis

