

Two-beam Test Stand: Beams, Structures and Experiments

Roger Ruber for the TBTS Team

http://cern.ch/ctf3-tbts

CTF3 Collaboration Meeting 5 May 2010

Two-beam Test Stand

30 GHz test stand 150 MeV e linac 3.5 A, 1.4 µs Construction supported by the Swedish Research Council two-beam test stand, probe beam and and the total length about 140 m Knut and Alice Experimental area Wallenberg Foundation F3 drive-beam **Spectrometers** and beam dumps ALIFES probe-beam

Two-beam Test Stand Prospects

- Unique and versatile facility
 - two-beam operation
 - high power drive-beam [~110 MeV, ~30A]
 - high quality probe-beam [~140 MeV, ~0.5A]
 - excellent beam diagnostics, long lever arms
 - easy access & flexibility for future upgrades
- Excellent test possibilities
 - power production & accelerating structures
 - beam kick
 - beam dynamics effects
 - full CLIC module
 - beam-based alignment

CTF3 Drive Beam

Mode	#1	#2	#3	
Energy	110(*)			[MeV]
Energy spread	2			[%]
Current	30	15	4	[A]
Pulse length	140	240	1100	[ns]
DBA frequency	1.5	3	3	[GHz]
Bunch frequency	12	12	3	[GHz]
Repetition rate	0.8(*)			[Hz]
PETS power	200	61	5	[MW]

NOTE:

- PETS length 1 m (0.215 m in CLIC)
- To adjust the pulse length, a tail clipper (TC) is installed between CR and TBTS.
- Upgrade possible to nominal 150 MeV at 5 Hz repetition rate.

CALIFES Probe Beam

Mode	SP	LP	
Energy	140		[MeV]
Energy spread	2		[%]
Current	1	0.13	[A]
Bunch charge	0.6	0.085	[nC]
Bunch number	32	226	
Pulse length	20	150	[ns]
Bunch frequency	1.5		[GHz]
Repetition rate	,	[Hz]	

NOTE:

Beam waist 0.1mm on OTR screen

TBTS Test Area

Structures Test Program

Drive Beam Area

- Installed:
 - TBTS PETS, 1m long
 - external RF power recirculation
- Next test foreseen:
 - PETS On/Off option (active reflector)
 A. Cappelletti (04-May-2010)
 4th X-band Workshop
 http://indico.cern.ch/event/75374

Probe Beam Area

- Installed:
 - TD24 = disks, tapered, damped, 24 cells
 A. Samoshkin (07-Apr-2010)
 CLIC RF struct. dev. meeting
 http://indico.cern.ch/event/72089
- Next test foreseen:
 - TD24 with wakefield monitor

Courtesy A. Cappelletti

TBTS New Instrumentation

TBTS New Instrumentation

Overview Experimental Program

2010 Run Schedule

- mid June to end July
 - CTF3 restart, initial TBTS beam
- August
 - PETS conditioning to nominal power/pulse length
- September
 - accelerating structure conditioning
 - two-beam acceleration tests
- October to December
 - (PETS) breakdown rate measurements?
 - breakdown kick measurements
 - beam loading compensation?
- 2011 Run Schedule
 - effect beam loading on breakdown rate?
 - test PETS on/off scheme

PETS Conditioning

- July/Sept 2009
 - with recirculation
 - limited by recirculation loop

$$-P_{max}=167 MW$$

$$-I_{max} = -9.9 A$$

- Nov/Dec 2009
 - w/o recirculation

$$- < P_{peak} > = 8.4 \text{ MW}$$

$$- < I_{peak} > = -8.7 A$$

- 250 ns pulse
- see talk A. Cappelletti today, 16:00

PETS Power Recirculation

- PETS length 1m, to compensate for lower beam current compared to CLIC
- External recirculation loop
 - increase PETS power in long pulse, low current mode #3
- power recirculation through external feedback loop:
 - electron bunch generates field burst
 - field burst returns
 after roundtrip time t_r = 26ns
 PETS operates as amplifier
 (LASER like)
- phase shifter to adjust phase error in the loop

Power Reconstruction with Recirculation

- Parameters constant during normal operation
 - → predicts PETS output power (CTF3 Note 092, 094, 096)
- Accurate parameter fit rising slope
 - → gives recirculation loop loss factor and phase shift
- Energy difference (ε) measurement and model indicates "pulse shortening" → breakdown indicator

Phase Reconstruction with Recirculation

- Strong phase change around point of "pulse shortening"
- Effect visible in all pulses with "shortening"
 - → useful for breakdown detection (CLIC Note 811)
- Initial phase variation incoming drive beam
 - → interpretation of recirculation phase (CTF3 Note 094) incomplete
 - → have to improve the algorithm...

Two-beam Acceleration

- Coarse timing drive and probe beam (ns adjustment)
 - assure signals on BPM and RF channels to overlap
- Calibration of RF system
 - characterize losses in waveguides
 PETS output RF pulse (shape) == ACS output if no probe beam
- Demonstrate acceleration by energy gain probe beam
 - scan along PETS 12GHz RF phase
 (sub-ps timing adjustment, 1° = 0.23ps):
 modify laser phase to adjust bunches to PETS phase
 - → monitor energy gain
 - Note: acceleration by 15% → adjust downstream optics!

Beam Kick Measurements

M. Johnson, CLIC Note 710

- 5 BPMs: incoming angle & offset, kick angle
- dipole + BPM5 for energy measurement

$$\vec{x} = A\vec{\theta}$$

$$\vec{\theta} = (A^t A)^{-1} A^t \vec{x}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ R_{11}^{12} & R_{12}^{12} & 0 & 0 \\ R_{11}^{13} & R_{12}^{13} & R_{12}^{c3} & 0 \\ R_{11}^{14} & R_{12}^{14} & R_{12}^{c4} & 0 \\ R_{11}^{15} & R_{12}^{15} & R_{12}^{c5} & D^5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1' \\ \theta \\ dp/p \end{pmatrix}$$

Importance of the Drive Beam Kick

- Maximum accepted PETS break down voltage in CLIC
 - transverse voltage required for 1mm offset in drive beam
 - as function of PETS (position) along linac

• PETS beam kick estimate: (point like bunch, 15GHz)
$$\theta/x_P = 2\frac{L_{\rm PETS}}{E_{tot}}e\frac{I}{f_{\rm bunch}}k_T' = 27\mu{\rm rad/mm}$$

From E. Adli, Thesis (2009)

Drive Beam Energy Loss in PETS

- Energy loss (CTF3 Note 097)
 - spectrometer line (blue)
 - PETS power + BPM intensity (green)
 - BPM intensity (black)
- Include initial energy variation
 - → improves kick measurement (CTF3 Note 098)

Electron and Ion Detection

- Downstream: moveable Faraday cup, if CALIFES off
- Upstream: Flashbox in-line detector for dark current and electrons/ions emitted during RF breakdown
 - magnetic chicane for electron deflection
 - DC field for ion deflection
 - fast electron signal as breakdown trigger, CALIFES off/on
 - segmented detector plates → longitudinal ion profile proportional to velocity distribution → plasma parameters of breakdown from Coulomb explosion model

Flashbox for Electron and Ion Detection

Data Acquisition and Controls

Electronics

- 16x 12GHz diode channels
- 8x I&Q demodulator channels
- 4x variable signal attenuators
- 32x 1 GS/s 250 MHz Acqiris ADCs

Software

- data acquisition and monitoring
 - adding drive beam upstream energy measurement
 - adding conditioning control ACS
- GUI control & monitoring TBTS, CALIFES, TL2'

Summary

 TBTS provides us with a versatile & unique facility for exciting physics!

- Related talks:
 - Status of CTF3F. Tecker, today 14:30
 - Results of Beam Based RF Power Production in CTF3
 A. Cappelletti, today 16:00
 - CALIFES Status
 W. Farabolini, tomorrow 09:30
 - CLIC Modules Program in CTF3
 G. Riddone, tomorrow 15:00