Marie Curie and HGF-Alliance Training Event 28.1.-30.1. 2010 Geant4 Simulation and ROOT Analysis of a Si Beam Telescope

2. Analysis Tasks

Note: When we talk about the

- spread or Root Mean Square (RMS) value of a distribution we mean the standard deviation of the distribution.
- resolution (or σ) of an observable we also mean the standard deviation of the distribution: reconstructed true.

Task 2.1: Position reconstruction

- a) determine pedestal and noise (from noise file)
- b) plot signal distributions of first five events
- c) implement cluster search algorithm with three signal/noise (S/N) threshold cuts, using S/N(strip)=2, S/N(seed strip)=3 and S/N(cluster)=5, plot number of cluster per event and number of strips per cluster
- d) implement hit position reconstruction using centre-of-gravity of cluster algorithm (plot position in units of strip number)

Task 2.2: Cluster charge distributions (Energy loss vs p and Landau distributions) for $p_{beam} = (2, 5, 10, 200)$ GeV/c:

- a) histogram cluster charge distribution for the different momenta
- b) perform Landau type fit to the cluster charge distributions
- c) determine for the cluster charge distributions: most probable value, mean and median energy loss and energy spread for the different momenta

Task 2.3: Momentum dependence of position and angular resolution for $p_{beam} = (2, 5, 10, 200)$ GeV/c:

a) determine single hit resolutions σ_{hit} : histogram residua reconstructed hit true track positions at sensor planes and note down the RMS values (may plot vs momenta)

- b) compare measured vs expected hit position, for the latter use the true track parameters at z=0 and extrapolate the track to the sensor planes (thus neglecting multiple scattering effects). Histogram the corresponding residua and check if they agree with expectations:
 - mean of zero (within the estimated error) and
 - spread² = $A + B/p^2$, determine A and B and compare to back on the envelope calculations of the multiple scattering effects
- c) This task only for the 200 GeV/c p_{beam} data in order to suppress multiple scattering effects: determine single hit resolution σ_{hit} from the reconstructed data only, using the triplet method: $res = 1/2 \cdot (x_1 + x_3) x_2$, where the x_i refer to the measured cluster positions in the three sensors. The spread of the residuum distribution should be equal to $\sqrt{3/2} \sigma_{hit}$
- d) perform a straight line fit $x = a_0 + a_1 \cdot z$ to the three reconstructed hits (σ from 2.3c) for $p_{beam} = 200 \text{ GeV/c}$. Histogram the fit parameter resolution distributions: $a_{0,fit} a_{0,true}$ and $a_{1,fit} a_{1,true}$. Note down mean and spread values. Compare the observed spreads with the fiterrors (output by the fit) of a_0 and a_1 . Optional task: Repeat this analysis for other p_{beam} values. How does it change and why?

Task 2.4: Position resolution of the DUT vs rotation angle θ_{DUT} for $p_{beam} = 200 \text{ GeV/c only}$:

The DUT sensor replaces the middle plane of the telescope.

- a) histogram the cluster charge for the different DUT rotation angles θ_{DUT} , determine the mean values and compare the results to expectations
- b) determine the hit resolution vs θ_{DUT} from the difference true measured
- c) determine the hit resolution vs θ_{DUT} using the triplet method: $res = 1/2 \cdot (x_1 + x_3) - x_{DUT}$ with $\sigma_{1/3}$ from 2.3c
- d) determine how the hit position resolution depends on the cluster charge Q(e.g. by comparing the data $Q > Q_{median}$ with $Q < Q_{median}$)

Reminder: Definition of the detector and beam

Coordinate system: z along beam, (x,y) = (horizontal, vertical)

Si beam telescope: 3 x-planes (i.e. stripes in y-direction):

- sensor thickness: 300 μ m
- no. strips: 48
- strip pitch: 20 μ m
- strip length: 10 mm
- conversion energy-loss to no.electrons: 3.6 eV/e
- rms noise (Gauss): 1000 e
- cross talk: none
- z-positions: $z_{sensor} = (200, 600, 1000) \text{ mm}$

Device under test (DUT): 1 x-plane can be rotated around y axis:

- sensor thickness: 300 μ m
- no. strips: 48
- strip pitch: 50 μ m
- strip length: 10 mm
- conversion energy-loss to no.electrons: 3.6 eV/e
- rms noise (Gauss): 1000 e
- cross talk: 5%
- z-positions: $z_{DUT} = 600$ mm (replacing the central plane of the beam telescope)

Pion beam:

- mean position at z = 0 mm: $\langle x_{beam} \rangle = \langle y_{beam} \rangle = 0$ mm spread position at z = 0 mm: $\sqrt{\langle x_{beam}^2 \rangle} = \sqrt{\langle y_{beam}^2 \rangle} = 0.1$ mm
- mean angle at z = 0 mm: $\langle \theta_x \rangle = \langle \theta_y \rangle = 0$ mrad
- spread angle at z=0 mm: $\sqrt{\langle \theta_x^2 \rangle} = \sqrt{\langle \theta_y^2 \rangle} = 0.1$ mrad
- $p_{beam} = (2, 5, 10, 200) \text{ GeV/c}$

Sensor simulation:

- define strip volume (xyz): (strip pitch, strip length, sensor thickness)
- calculate energy in MeV deposited in strip volume
- convert energy to charges (3.6 eV/e)
- introduce cross talk (make sure that no charge is lost!)
- introduce noise (Gauss with rms noise)