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>  The Monte Carlo method  
  Monte Carlo: What, why, and where? 

>  Random numbers 
  True random versus pseudo-random … 

>  Some mathematical basics 

>  Generating arbitrary distributions 
  Hit&miss, inversion of cumulative distribution, … 

>  MC integration 
  Hit&Miss, importance sampling, … 

>  Applications in HEP 

OUTLINE 
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>  Monte Carlo methods 

>  So use MC when there is no (known) analytical solution to a 
(mathematical or physical) problem: 
  Difficult integrals, numerical analysis 

  Complex systems with many degrees of freedom, natural phenomena 

  Social or economical systems 

  Higher-order processes in particle physics 

>  In the following, “MC method” denotes any algorithm that arrives, by the 
use of “random” numbers, at the solution of a problem. 

MONTE CARLO METHOD: DEFINITION Monte Carlo: 
what, why, where? 

… a class of computational algorithms that rely on repeated 
random sampling to compute their results. Monte Carlo 
methods are often used when simulating physical and 
mathematical systems. Because of their reliance on 
repeated computation of random or pseudo-random 
numbers, these methods are most suited to calculation by a 
computer and tend to be used when it is infeasible or 
impossible to compute an exact result with a 
deterministic algorithm. 
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>  Monte Carlo methods:  
  “ … their methods (v. Neumann et al.) … were aptly named after the international 

gaming destination …” 

  “ … after the War a wide range of sticky problems yielded to the new techniques …” 

  “ … virtually impossible to find a succint definition of `Monte Carlo’ method …” 

  “ … some authors prefer the term `stochastic simulation’ …” 

  “Monte Carlo is the art (sic!) of approximating an expectation by the sample mean of 
a function of simulated random variables.” 

  “Monte Carlo is about invoking laws of large numbers to approximate 
expectations.” 

MONTE CARLO METHOD: DEFINITION Monte Carlo: 
what, why, where? 



T. Schörner-Sadenius  | Monte Carlo: Basics and applications  |  MC-PAD / Alliance Geant4 WS, 29 January 2010  |  page 5 

MONTE CARLO METHOD: APPLICATIONS Monte Carlo: 
what, why, where? 
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>  Buffon’s needle: a question first posed in the 18th century by  
Georges-Louis Leclerc, Comte de Buffon: 
  Suppose we have a floor made of parallel strips of  

wood, each of the same width t, and we drop a needle 
of length l onto the floor. What is the probability that  
the needle will lie across a line between two strips?  

>  Calculating pi 
  Very amusing description in W. Krauth,  

“Introduction To Monte Carlo Algorithms”  
(arXiv:cond-mat/9612186v2) 

PARADIGMATIC EXAMPLES Monte Carlo: 
what, why, where? 

See example 
later today 
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>  “Random” numbers are at the heart of the MC method.  

>  A sequence of random numbers is a set of numbers that have 
nothing to do with the other numbers in the sequence.  

>  There is no unique random number (sequence)!  

>  So … how to get random numbers usable for our purposes? 

>  One (very attractive) option: Gambling in Monaco! 

(PSEUDO)RANDOM NUMBERS Random 
numbers 

Tiresome and 
potentially 
expensive! 
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>  To obtain true random numbers … 

>  … use some classical chaotic system like roulette, lotto, dices, coin 
tossing… 
  In principle, knowing all initial conditions, such a system is predictable – however, it is 

extremely sensitive  true random … 

>  … or use “modern physics”  
random processes like 
  radioactive decay, … 

  …  or other quantum mechanical  
process. Nice example: Photons 
on semi-transparent mirror! 
 available and tested by DESY  
     summer student! 

>  However, for typical nowadays applications (implementation in 
computer programs) all these true random number principles are too, 
slow, to cumbersome, not easily automatised, etc. 
 go for “second-best”: pseudo-random numbers! 

(TRUE) RANDOM NUMBERS Random 
numbers 
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>  Another nice example:  
random.org 
  Making use of atmospheric  

noise which ican be picked  
up with a normal radio! 

(TRUE) RANDOM NUMBERS Random 
numbers 
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>  … are a sequence of numbers that … well, APPEAR to be random,  
  but where in fact each number is derived from the previous N numbers by a well-

defined algorithm. 

>  More precisely, you want to generate integers In in the interval [0;M] 
and from that derive Ri = In/M.  

>  Numerous algorithms developed, for example “Middle Square 
Algorithm” (J. v. Neumann, 1946):  
  Start with a number of 10 digits, square it, take the middle 10 digits as the next 

number etc.  

  More complex algos don’t necessarily lead to better results. Best to use algorithms 
that are well understood in their degree of “randomness”. 

>  Nice example: “Linear congruential generator”: 

PSEUDO-RANDOM NUMBERS Random 
numbers 

€ 

In+1 =mod a ⋅ In + c,m( )
Rn+1 = In+1 m

Seed I0  modulus m 
Multiplicative constant a 
Additive constant c 
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PSEUDO-RANDOM NUMBERS Random 
numbers 

Example for linear congruential generator: I0 = 10, a = 2, c = 5, m = 20: 

I1 = mod(2*10 + 5, 19) =  6 
I2 = mod(2*6 + 5, 19) =  17 
I3 = mod(2*17 + 5, 19) =  1 
I4 = mod(2*1 + 5, 19) =  7 
I5 = mod(2*7 + 5, 19) =  0 
I6 = …    5, 15, 16, 18, 3, 11, 8, 2, 9, 4, 13, 12, 10, 6, …    

 After m steps, the sequence repeats! 

Note: Criteria for randomness:  
  uniformity 
  correlation tests 
  sequence-up / sequence-down tests 
  gap tests 
  random walk tests 
  … 
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>  By definition, the LCG generator has a  
maximum “random” sequence of length m. 
  After that, repetition  strong correlation of generated numbers:  

>  Example for demonstration (I0 = 4711, a = 205, c = 29573, m = 139968). 
  Shown is the correlation between pairs of numbers (Rn;Rn+1): 

LINEAR CONGRUENTIAL GENERATOR Random 
numbers 

€ 

In+1 =mod a ⋅ In + c,m( )
Rn+1 = In+1 m
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>  By definition, the LCG generator has a  
maximum “random” sequence of length m. 
  After that, repetition  strong correlation of generated numbers:  

>  Example for demonstration (I0 = 4711, a = 205, c = 29573, m = 139968). 
  Shown is the correlation between pairs of numbers (Rn;Rn+1): 

LINEAR CONGRUENTIAL GENERATOR Random 
numbers 

€ 

In+1 =mod a ⋅ In + c,m( )
Rn+1 = In+1 m
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>  By definition, the LCG generator has a  
maximum “random” sequence of length m. 
  After that, repetition  strong correlation of generated numbers:  

>  Example for demonstration (I0 = 4711, a = 205, c = 29573, m = 139968). 
  Shown is the correlation between pairs of numbers (Rn;Rn+1): 

>  … let’s now assume we have random numbers … 

LINEAR CONGRUENTIAL GENERATOR Random 
numbers 

€ 

In+1 =mod a ⋅ In + c,m( )
Rn+1 = In+1 m

RANLUX 
generator 

RANLUX:  
M. Lüscher, CPC79 (1994) 100.  
Developed for lattice QCD calc. 
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>  Expectation value E(f) or µ: defined as  
the average/mean value of function f: 
(“mean value theorem”) 

 close connection to integration (later) etc.! 

>  Variance V(f) (~standard deviation σ2): 

 relevance: want small uncertainties on MC predictions / results 
 aim to reduce variance (not really covered here).  

(MATHEMATICAL) BASICS Mathematical 
basics 

€ 

E f( ) = f u( )dG u( ) =
uniformPDF

∫ 1
b − a

f u( )du
a

b
∫

 

 
 

 

 
 

E cx + y( ) = cE x( ) + E y( )

€ 

V f( ) = f − E f( )( )2dG =
1

b − a
f − E f( )( )2dua

b
∫

 

 
 

 

 
 ∫

a b 

E(f) 
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>  Law of large numbers: For large enough statistics, relative frequency of 
an outcome approaches probability. 
  For MC relevant (integration!): Choose N numbers ui randomly with uniform 

probability density in interval [a;b], evaluate f(ui) for each ui:  

>  Central limit theorem: For large N, the sum of N independent random 
variables is ALWAYS normally (Gaussian) distributed! 

(MATHEMATICAL) BASICS Mathematical 
basics 

€ 

1
N

f ui( )→ 1
b − a

f u( )du
a

b

∫
i=1

N

∑
For large enough N, the Monte Carlo  
estimate of the integral converges to 
the correct answer. 

€ 

Zn ≡ xi
i=1

N

∑

 This outcome is independent of the original distributions of the xi! 

€ 

f Zn( ) =
n→∞ 1

σ 2π
exp −

Zn −µ( )2

2σ 2

 

 
 
 

 

 
 
 

is Gaussian 
(for ninfty)!!! :  
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>  Simple example: sum of n random numbers xi from [0;1] : 

(MATHEMATICAL) BASICS Mathematical 
basics 

€ 

Rn = Rii=1

n
∑

E R1( ) = udu
0

1
∫ =1 2

V R1( ) = u −1 2( )2du
0

1
∫ =1 12
E Rn( ) = n 2
V Rn( ) = n 12
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>  Simple example: sum of n random numbers xi from [0;1] : 

(MATHEMATICAL) BASICS Mathematical 
basics 

€ 

Rn = Rii=1

n
∑

E R1( ) = udu
0

1
∫ =1 2

V R1( ) = u −1 2( )2du
0

1
∫ =1 12
E Rn( ) = n 2
V Rn( ) = n 12

N=1 N=3 

N=6 N=40 
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>  Simple example: sum of n random numbers xi from [0;1] : 

>  To generate normal distribution  
centered at 0, variance 1, use:  

more generally:  

(MATHEMATICAL) BASICS Mathematical 
basics 

€ 

Rn = Rii=1

n
∑

E R1( ) = udu
0

1
∫ =1 2

V R1( ) = u −1 2( )2du
0

1
∫ =1 12
E Rn( ) = n 2
V Rn( ) = n 12

€ 

Rn − n 2
n 12

=
Rii=1

n
∑ − µii=1

n
∑
σ i
2

i=1

n
∑

€ 

Zn ≡
xi − n ⋅µi

∑
nσ

→ N 0,1( )

N=1 N=3 

N=6 N=40 
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(MATHEMATICAL) BASICS Mathematical 
basics 

€ 

1
N

f ui( )→ 1
b − a

f u( )du
a

b

∫
i=1

N

∑
For large enough N, the Monte Carlo  
estimate of the integral converges to 
the correct answer. 

From WIKIPEDIA: N=1 N=2 

N=3 N=4 
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(MATHEMATICAL) BASICS Mathematical 
basics 

>  Bohm&Zech: Einführung in  
die Statistik und Messwertanalyse: 
  Works for ANY starting distribution!!!! 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Assume you want to create events according to some distribution f(x)! 

>  Brute force or Hit&Miss method: 
  Works always – but not very elegant and not always efficient! 

f(x) 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Assume you want to create events according to some distribution f(x)! 

>  Brute force or Hit&Miss method: 
  Works always – but not very elegant and not always efficient! 

  Find maximum c*max(f). c*max(f) 

f(x) 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Assume you want to create events according to some distribution f(x)! 

>  Brute force or Hit&Miss method: 
  Works always – but not very elegant and not always efficient! 

  Find maximum c*max(f). 

  Choose random number xi. 

c*max(f) 

f(x) 

xi 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Assume you want to create events according to some distribution f(x)! 

>  Brute force or Hit&Miss method: 
  Works always – but not very elegant and not always efficient! 

  Find maximum c*max(f). 

  Choose random number xi. 

  Calculate f(xi). 

c*max(f) 

f(x) 

xi 

f(xi) 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Assume you want to create events according to some distribution f(x)! 

>  Brute force or Hit&Miss method: 
  Works always – but not very elegant and not always efficient! 

  Find maximum c*max(f). 

  Choose random number xi. 

  Calculate f(xi). 

  Choose random number ui  
   from interval [0;c*max(f)]. 

c*max(f) 

f(x) 

xi 

f(xi) 

ui 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Assume you want to create events according to some distribution f(x)! 

>  Brute force or Hit&Miss method: 
  Works always – but not very elegant and not always efficient! 

  Find maximum c*max(f). 

  Choose random number xi. 

  Calculate f(xi). 

  Choose random number ui  
   from interval [0;c*max(f)]. 

  If ui > f(xi) reject event.  

  Else accept  
   (and make entry in histogram)! 

c*max(f) 

f(x) 

xi 

f(xi) 

ui 
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GENERATING DISTRIBUTIONS (1) Generating 
distributions 

>  Brute force or Hit&Miss method: 
  Preferred if no simple analytical solution exists! 
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GENERATING DISTRIBUTIONS (2) Generating 
distributions 

>  Modified brute force or Hit&Miss method: 
  Improve efficiency by variable transformation or better adjusted estimate of 

maximum! 

  Find function c*g(x) > f(x). 
  Choose random number xi. 
  Calculate f(xi). 
  Choose random number ui  
   from interval [0;c*g(x)]. 
  If ui > f(xi) reject event.  
  Else accept! 
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GENERATING DISTRIBUTIONS (2) Generating 
distributions 

>  Modified brute force or Hit&Miss method: 
  Improve efficiency by variable transformation or better adjusted estimate of 

maximum! 

  Find function c*g(x) > f(x). 
  Choose random number xi. 
  Calculate f(xi). 
  Choose random number ui  
   from interval [0;c*g(x)]. 
  If ui > f(xi) reject event.  
  Else accept! 
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GENERATING DISTRIBUTIONS (3) Generating 
distributions 

>  More elegantly – if analytically possible: 
  Generation via “inversion of cumulative distribution function” 

  Let f(t) be the function to simulate:  

  First build the cumulative distribution 
   (“Stammfunktion”) 

  Build the inverse of F(x), F-1(Z). 

  Proposition: With Z from [0.;1.]  
   F-1(Z) is distributed as f(t). 

  Proof in many books and lectures ;-).  

€ 

f t( )

€ 

F x( ) = f t( )dt
0

x
∫

€ 

xi = F −1 Zi( )

>  Works nicely and elegantly - 
  … see examples on next pages.  
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GENERATING DISTRIBUTIONS (3) Generating 
distributions 

>  More elegantly – if analytically possible: 
  Generation via “inversion of cumulative distribution function” 

  Let f(t) be the function to simulate:  

  First build the cumulative distribution 
   (“Stammfunktion”) 

  Build the inverse of F(x), F-1(Z). 

  Proposition: With Z from [0.;1.]  
   F-1(Z) is distributed as f(t). 

  Proof in many books and lectures ;-).  

€ 

f t( )

€ 

F x( ) = f t( )dt
0

x
∫

€ 

xi = F −1 Zi( )

>  Works nicely and elegantly - 
  … see examples on next pages.  

€ 

f t( ) = 1t

€ 

F x( )∝ 1
t dt∫ ∝ ln t

€ 

xi = F −1 Zi( ) = exp Zi( )

Take uniform numbers Zi and  
use as “random” number xi. 
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GENERATING DISTRIBUTIONS (3) Generating 
distributions 

€ 

xi = F −1 Zi( ) Z ∈ 0.;1.[ ]
F −1 Zi( ) = Zi

€ 

F −1 Zi( ) = Zi
3

€ 

F −1 Zi( ) = exp Zi( )

€ 

F −1 Zi( ) = a + b ⋅ tan π ⋅ Zi −1 2( )

€ 

F −1 Zi( ) = −lnZi

€ 

F −1 Zi( ) = Zi
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MC INTEGRATION (1) MC  
Integration 

>  Another application of hit&miss:  
Calculating π using pebbles on  
the beach or helicopters in MC: 

Area          = a2  

Area          = π*(a/2)2  π = 4*N     / N 

/        =4/π  N     / N 

a 

a 

… invoking again the law of large numbers … 
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MC INTEGRATION (1) MC  
Integration 

>  Calculating π using pebbles on the beach or helicopters in Monte Carlo: 

103:  3.056000 
104:  3.132800 
105:  3.145680 
106:  3.141996 
107:  3.141707 
108:  … 

π = 3.141592653… 
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MC INTEGRATION (2) MC  
Integration 

>  Integration with Hit&Miss method:  
  Get random number R1 for x axis  

in interval [0.;20.] (here). 

  Get random number R2 for y axis 
between 0. and c*max(f). 

  Reject if R2 > f(R1) (point “above”  
function).  

  Else accept. 

 In principle comparison with area 
  of known size! 

>  Example: Landau distribution 
(energy loss of particles passing a 
thin layer of matter) 
  Strongly peaked signal 

  … now do hit and miss … 
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MC INTEGRATION (2) MC  
Integration 
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MC INTEGRATION (2) MC  
Integration 

Hit!!!! 
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MC INTEGRATION (2) MC  
Integration 

Hit!!!! Miss!!!! 
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MC INTEGRATION (2) MC  
Integration 

Hit!!!! Miss!!!! 
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MC INTEGRATION (2) MC  
Integration 

Hit!!!! Miss!!!! 

  Efficiency (ratio of hit/miss): 9% for hits example! 
  91% of “events” generated for the garbage 
  Highly inefficient CPU usage! 

 Can we do better?   
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MC INTEGRATION (3) MC  
Integration 

>  Remember function generation by hit&miss: Increase efficiency by 
choosing better function maximum!  

€ 

f x( ) = 1
x 0.7

Efficiency: 19% 

… now try something similar to  
distribution generation … 
Choose g(x)~1/x … 
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MC INTEGRATION (3) MC  
Integration 

>  Remember function generation by hit&miss: Increase efficiency by 
choosing better function maximum!  

€ 

f x( ) = 1
x 0.7

Efficiency: 19% 

Efficiency: 72% 

€ 

g x( ) = 1x

€ 

σ =
V f( ) V g( )

N

Side effect: potential 
reduction of variance:  
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MC INTEGRATION (4) MC  
Integration 

>  Mathematically: Solve 

>  Remember Law of Large Numbers: 

MC estimate converges to true integral: 

>  Remember Central Limit Theorem:  
  MC estimate is asymptotically normally  

distributed, approaching Gaussian density with 

  to  decrease estimate uncertainty, increase N! 
(or try to reduce the variance of the relevant function) 

€ 

˜ E f x( )( ) =
1
N

f ui( )→ 1
b − a

f u( )du
a

b

∫
i=1

N

∑

€ 

σ =
V f( )
N

∝
1
N

€ 

I = f x( )dx = b − a( )E f x( )( )a

b
∫

€ 

I ≈ IMC =
b − a
N

f xi( )
i=1

N

∑

(Mean value theorem) 
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MC INTEGRATION (4) MC  
Integration 

>  Importance sampling: increase efficiency;  
start with `barely relevant’ sampling 

 no sense to sample where 
function f(x) is 0 (or small).  
 extending the integration (and the under- 
     lying probability density) to regions which  
     don’t contribute is … a waste of resources. 

 concentrate on the relevant regions, and invest 
more CPU time in them! 

€ 

f x( ) = 1
x 0.7

€ 

h x( ) =1
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MC INTEGRATION (4) MC  
Integration 

>  Importance sampling: increase efficiency;  
start with `barely relevant’ sampling 

 no sense to sample where 
function f(x) is 0 (or small).  
 extending the integration (and the under- 
     lying probability density) to regions which  
     don’t contribute is … a waste of resources. 

 concentrate on the relevant regions, and invest 
more CPU time in them! 

  Some mathematics: 
 [mean value theorem] 

€ 

I f x( )[ ] = b − a( )E f (x)[ ]

€ 

f x( ) = 1
x 0.7

€ 

h x( ) =1

€ 

E f (x)[ ] = Eh f (x)[ ] = f (x)dx∫ = f (x)h(x)dx∫

Mostly assuming constant PDF (h(x)=1 here) 
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MC INTEGRATION (4) MC  
Integration 

>  Importance sampling 
more rigorously: 
 Introduce a better suited PDF g(x):  

  Thus we can calculate the integral I by 

  Generating a sample xi according to g(x) 

  Using                                        get I as: 

€ 

I f x( )[ ] = b − a( )E f (x)[ ]

€ 

f x( ) = 1
x 0.7

€ 

h x( ) = c

€ 

Eh f (x)[ ] = f (x)h(x)dx∫ = f (x)h(x)
g x( )
g x( )

dx∫

= f (x)
h x( )
g x( )

g x( )dx∫ ≡ f (x)w x( )g x( )dx∫

= Eg f (x)w x( )[ ]

€ 

g x( )∝ 1x

€ 

1
n

f xi( )
i=1

n
∑ →

n→∞

Eh f (x)[ ]

€ 

I f x( )[ ] = b − a( )Eh f (x)[ ] = Eg f (x)w x( )[ ]

= b − a( ) 1
n

f (xi)w xi( )
i=1

n
∑
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MC INTEGRATION (4) MC  
Integration 

>  Importance sampling 
more rigorously: 
 Introduce a better suited PDF g(x):  

  Thus we can calculate the integral I by 

  Generating a sample xi according to g(x) 

  Using                                        get I as: 

€ 

I f x( )[ ] = b − a( )E f (x)[ ]

€ 

Eh f (x)[ ] = f (x)h(x)dx∫ = f (x)h(x)
g x( )
g x( )

dx∫

= f (x)
h x( )
g x( )

g x( )dx∫ ≡ f (x)w x( )g x( )dx∫

= Eg f (x)w x( )[ ]

€ 

g x( )∝ 1x

€ 

1
n

f xi( )
i=1

n
∑ →

n→∞

Eh f (x)[ ]

€ 

I f x( )[ ] = b − a( )Eh f (x)[ ] = Eg f (x)w x( )[ ]

= b − a( ) 1
n

f (xi)w xi( )
i=1

n
∑

Requirements on g(x):  
  Integrable 
  simple 
  close in shape to f(x) 
  Efficient to generate 
  … 
 Not always easy to find! 
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MC INTEGRATION (5) MC  
Integration 

>  Comparison of MC integration with other  
numerical methods (from Hannes Jung): 

  Monte Carlo: Hit & Miss 

  Trapezoidal Rule: approximate integral  
in subinterval by area of trapezoid 
below (above) curve 

  Simpson quadrature: approximate by  
parabola 

  Gauss quadrature: approximate by  
higher order polynomial 

 Especially for higher dimensions,   
 MC integration wins very often! 



T. Schörner-Sadenius  | Monte Carlo: Basics and applications  |  MC-PAD / Alliance Geant4 WS, 29 January 2010  |  page 50 

>  “MC generators”: Computer programs to  
simulate “arbitrarily” complex physics  
following some distribution. 
  Higher-order calculations, parton shower … 

  HERWIG, PYTHIA, etc. 

>  Statistics: Markov chains etc. 

>  Detector simulation programs 
  Simulate interactions of particles with the matter. 

  … for example for detector corrections. 

MC IN HEP Monte Carlo  
in HEP 



T. Schörner-Sadenius  | Monte Carlo: Basics and applications  |  MC-PAD / Alliance Geant4 WS, 29 January 2010  |  page 51 

>  “MC methods”: no unique definition, but … 
  … invoking law of large numbers to approximate expectations … 

  … making use of “random” numbers for sampling purposes. 

>  (Pseudo)Random numbers: 
  Necessary ingredient, but not too easy to obtain. Different methods with more or less 

good properties. 

>  Generating distributions … 
  … by means of hit&miss or, for example, inversion of the cumulative function, … 

>  Integration as one of the main applications. 
  … hit and miss, … 

  … importance sampling … 

>  Numerous applications 
  … in HEP 

  … and elsewhere. 

SUMMARY 


