The Monte Carlo Method

Basics and (simple) applications

Thomas Schörner-Sadenius
GEANT4 Training Event DESY Hamburg, 28 January 2010

OUTLINE

> The Monte Carlo method

- Monte Carlo: What, why, and where?
$>$ Random numbers
- True random versus pseudo-random ...
$>$ Some mathematical basics
> Generating arbitrary distributions
- Hit\&miss, inversion of cumulative distribution, ...
> MC integration
- Hit\&Miss, importance sampling, ...
> Applications in HEP
> Monte Carlo methods
... a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo methods are often used when simulating physical and mathematical systems. Because of their reliance on repeated computation of random or pseudo-random numbers, these methods are most suited to calculation by a computer and tend to be used when it is infeasible or impossible to compute an exact result with a deterministic algorithm.
$>$ So use MC when there is no (known) analytical solution to a (mathematical or physical) problem:
- Difficult integrals, numerical analysis
- Complex systems with many degrees of freedom, natural phenomena
- Social or economical systems
- Higher-order processes in particle physics
$>$ In the following, "MC method" denotes any algorithm that arrives, by the use of "random" numbers, at the solution of a problem.
$>$ Monte Carlo methods:
- " ... their methods (v. Neumann et al.) ... were aptly named after the international gaming destination ..."
- " ... after the War a wide range of sticky problems yielded to the new techniques ..."
- " ... virtually impossible to find a succint definition of `Monte Carlo’ method ..."
- " ... some authors prefer the term `stochastic simulation' ..."
- "Monte Carlo is the art (sic!) of approximating an expectation by the sample mean of a function of simulated random variables."
- "Monte Carlo is about invoking laws of large numbers to approximate expectations."

$>$ Buffon's needle: a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon:
- Suppose we have a floor made of parallel strips of wood, each of the same width t, and we drop a needle of length I onto the floor. What is the probability that the needle will lie across a line between two strips?
$>$ Calculating pi

- Very amusing description in W. Krauth, "Introduction To Monte Carlo Algorithms" (arXiv:cond-mat/9612186v2)

[^0]> "Random" numbers are at the heart of the MC method.
$>$ A sequence of random numbers is a set of numbers that have nothing to do with the other numbers in the sequence.
$>$ There is no unique random number (sequence)!
$>$ So ... how to get random numbers usable for our purposes?
> One (very attractive) option: Gambling in Monaco!

$>$ To obtain true random numbers ...
$>\ldots$ use some classical chaotic system like roulette, lotto, dices, coin tossing...

- In principle, knowing all initial conditions, such a system is predictable - however, it is extremely sensitive \rightarrow true random ...
$>$... or use "modern physics" random processes like
- radioactive decay, ...
- ... or other quantum mechanical process. Nice example: Photons on semi-transparent mirror!
\rightarrow available and tested by DESY summer student!

> However, for typical nowadays applications (implementation in computer programs) all these true random number principles are too, slow, to cumbersome, not easily automatised, etc.
\rightarrow go for "second-best": pseudo-random numbers!

> Another nice example: random.org

- Making use of atmospheric noise which ican be picked up with a normal radio!

RANDOM.ORC - True Random Number Service
4 -
(C) (i) http://www.random.org/
$\hat{\omega} \cdot($ Coogle
Q
privat - HEP - News - PLHC2010 - Alliance - Communication - Habil/EPJC
(8) ZMS | Link-Box (2) © Physics at the LHC 2010 ($07-1 \ldots$ © R RANDOM.ORG - True Random ... © +

Home Introduction Statistics Numbers Drawings Testimonials FAQ Contact Login What's New!

RANDOM.ORG

True Random Number Service

What's this fuss about true randomness?

Perhaps you have wondered how predictable machines like computers can generate randomness. In reality, most random numbers used in computer programs are pseudo-random, which means they are a generated in a predictable fashion using a mathematical formula. This is fine for many purposes, but it may not be random in the way you expect if you're used to dice rolls and lottery drawings.

RANDOM.ORG offers true random numbers to anyone on the Internet. The randomness comes from atmospheric noise, which for many purposes is better than the pseudo-random number algorithms typically used in computer programs. People use RANDOM.ORG for holding drawings, lotteries and sweepstakes, to drive games and gambling sites, for scientific applications and for art and music. The service has existed since 1998 and was built and is being operated by Mads Haahr of the School of Computer Science and

True Random Number Generator
Min:
Max: 100
Generate
Result:
Powered by RaNDOM.ORG

Too many options? Go Somewhere Random! Statistics at Trinity College, Dublin in Ireland.

$>\ldots$ are a sequence of numbers that \ldots well, APPEAR to be random,

- but where in fact each number is derived from the previous N numbers by a welldefined algorithm.
$>$ More precisely, you want to generate integers I_{n} in the interval $[0 ; M]$ and from that derive $R_{i}=I_{n} / M$.
$>$ Numerous algorithms developed, for example "Middle Square Algorithm" (J. v. Neumann, 1946):
- Start with a number of 10 digits, square it, take the middle 10 digits as the next number etc.
- More complex algos don't necessarily lead to better results. Best to use algorithms that are well understood in their degree of "randomness".
> Nice example: "Linear congruential generator":

$$
\begin{array}{cl}
I_{n+1}=\bmod \left(a \cdot I_{n}+c, m\right) & \text { Seed } \mathrm{I}_{0} \text { modulus } \mathrm{m} \\
\text { Multiplicative constant a } \\
R_{n+1}=I_{n+1} / m & \text { Additive constant c }
\end{array}
$$

Example for linear congruential generator: $I_{0}=10, a=2, c=5, m=20$:
$\begin{array}{ll}I_{1}=\bmod \left(2^{*} 10+5,19\right)= & 6 \\ I_{2}=\bmod \left(2^{*} 6+5,19\right)= & 17 \\ I_{3}=\bmod \left(2^{*} 17+5,19\right)= & 1 \\ I_{4}=\bmod \left(2^{*} 1+5,19\right)= & 7 \\ I_{5}=\bmod \left(2^{*} 7+5,19\right)= & 0 \\ I_{6}=\ldots & 5,15,16,18,3,11,8,2,9,4,13,12,10,6, \ldots\end{array}$

\rightarrow After m steps, the sequence repeats!

Note: Criteria for randomness:

- uniformity
- correlation tests
- sequence-up / sequence-down tests
- gap tests
- random walk tests
- ...
> By definition, the LCG generator has a maximum "random" sequence of length m.

$$
\begin{gathered}
\hline I_{n+1}=\bmod \left(a \cdot I_{n}+c, m\right) \\
R_{n+1}=I_{n+1} / m
\end{gathered}
$$

- After that, repetition \rightarrow strong correlation of generated numbers:

Example for demonstration ($\left.I_{0}=4711, a=205, c=29573, m=139968\right)$.

- Shown is the correlation between pairs of numbers $\left(R_{n} ; R_{n+1}\right)$:
$>$ By definition, the LCG generator has a maximum "random" sequence of length m.

$$
\begin{gathered}
I_{n+1}=\bmod \left(a \cdot I_{n}+c, m\right) \\
R_{n+1}=I_{n+1} / m
\end{gathered}
$$

- After that, repetition \rightarrow strong correlation of generated numbers:
$>$ Example for demonstration ($I_{0}=4711, a=205, c=29573, m=139968$).
- Shown is the correlation between pairs of numbers $\left(R_{n} ; R_{n+1}\right)$:

$>$ By definition, the LCG generator has a maximum "random" sequence of length m.

$$
\begin{gathered}
I_{n+1}=\bmod \left(a \cdot I_{n}+c, m\right) \\
R_{n+1}=I_{n+1} / m
\end{gathered}
$$

- After that, repetition \rightarrow strong correlation of generated numbers:
$>$ Example for demonstration ($I_{0}=4711, a=205, c=29573, m=139968$).
- Shown is the correlation between pairs of numbers $\left(R_{n} ; R_{n+1}\right)$:

> ... let's now assume we have random numbers ...
$>$ Expectation value $\mathrm{E}(\mathrm{f})$ or μ : defined as the average/mean value of function f : ("mean value theorem")

$$
\begin{gathered}
E(f)=\int f(u) d G(u)_{\text {uniformPDF }}^{=}\left(\frac{1}{b-a} \int_{a}^{b} f(u) d u\right) \\
E(c x+y)=c E(x)+E(y)
\end{gathered}
$$

\rightarrow close connection to integration (later) etc.!

$>$ Variance $\mathrm{V}(\mathrm{f})$ (\sim standard deviation σ^{2}):

$$
V(f)=\int(f-E(f))^{2} d G=\left(\frac{1}{b-a} \int_{a}^{b}(f-E(f))^{2} d u\right)
$$

\rightarrow relevance: want small uncertainties on MC predictions / results
\rightarrow aim to reduce variance (not really covered here).
$>$ Law of large numbers: For large enough statistics, relative frequency of an outcome approaches probability.

- For MC relevant (integration!): Choose N numbers u_{i} randomly with uniform probability density in interval $[a ; b]$, evaluate $f\left(u_{i}\right)$ for each u_{i} :

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(u_{i}\right) \rightarrow \frac{1}{b-a} \int_{a}^{b} f(u) d u
$$

For large enough N , the Monte Carlo estimate of the integral converges to the correct answer.
$>$ Central limit theorem: For large N, the sum of N independent random variables is ALWAYS normally (Gaussian) distributed!

$$
Z_{n} \equiv \sum_{i=1}^{N} x_{i} \begin{aligned}
& \text { is Gaussian } \\
& (\text { for } n \rightarrow \text { infty })!!!
\end{aligned}
$$

$$
f\left(Z_{n}\right)^{n \rightarrow \infty}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{\left(Z_{n}-\mu\right)^{2}}{2 \sigma^{2}}\right]
$$

\rightarrow This outcome is independent of the original distributions of the x_{i} !

(MATHEMATICAL) BASICS

$>$ Simple example: sum of n random numbers x_{i} from $[0 ; 1]$:

$$
\begin{gathered}
R_{n}=\sum_{i=1}^{n} R_{i} \\
E\left(R_{1}\right)=\int_{0}^{1} u d u=1 / 2 \\
V\left(R_{1}\right)=\int_{0}^{1}(u-1 / 2)^{2} d u=1 / 12 \\
E\left(R_{n}\right)=n / 2 \\
V\left(R_{n}\right)=n / 12
\end{gathered}
$$

$>$ Simple example: sum of n random numbers x_{i} from $[0 ; 1]$:

$$
\begin{gathered}
R_{n}=\sum_{i=1}^{n} R_{i} \\
E\left(R_{1}\right)=\int_{0}^{1} u d u=1 / 2 \\
V\left(R_{1}\right)=\int_{0}^{1}(u-1 / 2)^{2} d u=1 / 12 \\
E\left(R_{n}\right)=n / 2 \\
V\left(R_{n}\right)=n / 12
\end{gathered}
$$

r6

$>$ Simple example: sum of n random numbers x_{i} from $[0 ; 1]$:

$$
\begin{gathered}
R_{n}=\sum_{i=1}^{n} R_{i} \\
E\left(R_{1}\right)=\int_{0}^{i} u d u=1 / 2 \\
V\left(R_{1}\right)=\int_{0}^{1}(u-1 / 2)^{2} d u=1 / 12 \\
E\left(R_{n}\right)=n / 2 \\
V\left(R_{n}\right)=n / 12
\end{gathered}
$$

$>$ To generate normal distribution centered at 0 , variance 1 , use:

$$
\frac{R_{n}-n / 2}{\sqrt{n / 12}}=\frac{\sum_{i=1}^{n} R_{i}-\sum_{i=1}^{n} \mu_{i}}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}}
$$

more generally:

$$
Z_{n} \equiv \frac{\sum_{i} x_{i}-n \cdot \mu}{\sqrt{n} \sigma} \rightarrow N(0,1)
$$

r6

T. Schörner-Sadenius | Monte Carlo: Basics and applications | MC-PAD / Alliance Geant4 WS, 29 January 2010 | page 20

(MATHEMATICAL) BASICS

> Bohm\&Zech: Einführung in die Statistik und Messwertanalyse:
" Works for ANY starting distribution!!!!

GENERATING DISTRIBUTIONS (1)

$>$ Assume you want to create events according to some distribution $f(x)$!
$>$ Brute force or Hit\&Miss method:

- Works always - but not very elegant and not always efficient!

GENERATING DISTRIBUTIONS (1)

$>$ Assume you want to create events according to some distribution $f(x)$!
$>$ Brute force or Hit\&Miss method:

- Works always - but not very elegant and not always efficient!

Find maximum $c^{*} \max (\mathrm{f})$.

GENERATING DISTRIBUTIONS (1)

$>$ Assume you want to create events according to some distribution $f(x)$!
$>$ Brute force or Hit\&Miss method:

- Works always - but not very elegant and not always efficient!

Find maximum c*max(f).
Choose random number x_{i}.

GENERATING DISTRIBUTIONS (1)

$>$ Assume you want to create events according to some distribution $f(x)$!
$>$ Brute force or Hit\&Miss method:

- Works always - but not very elegant and not always efficient!

Find maximum c*max(f).
Choose random number x_{i}.
Calculate $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$.

GENERATING DISTRIBUTIONS (1)

$>$ Assume you want to create events according to some distribution $f(x)$!
$>$ Brute force or Hit\&Miss method:

- Works always - but not very elegant and not always efficient!

Find maximum $c^{*} \max (\mathrm{f})$.
Choose random number x_{i}.
Calculate $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$.
Choose random number u_{i} from interval [0;c*max(f)].

GENERATING DISTRIBUTIONS (1)

$>$ Assume you want to create events according to some distribution $f(x)$!
$>$ Brute force or Hit\&Miss method:

- Works always - but not very elegant and not always efficient!

Find maximum c*max(f).
Choose random number x_{i}.
Calculate $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$.
Choose random number u_{i} from interval [0;c*max(f)].

If $u_{i}>f\left(x_{i}\right)$ reject event.
Else accept (and make entry in histogram)!

$>$ Brute force or Hit\&Miss method:

- Preferred if no simple analytical solution exists!

GENERATING DISTRIBUTIONS (2)

$>$ Modified brute force or Hit\&Miss method:

- Improve efficiency by variable transformation or better adjusted estimate of maximum!

> Modified brute force or Hit\&Miss method:

- Improve efficiency by variable transformation or better adjusted estimate of maximum!

GENERATING DISTRIBUTIONS (3)

> More elegantly - if analytically possible:

- Generation via "inversion of cumulative distribution function"

Let $f(t)$ be the function to simulate:
$f(t)$

$$
F(x)=\int_{0}^{x} f(t) d t
$$

$$
x_{i}=F^{-1}\left(Z_{i}\right)
$$

Proof in many books and lectures ;-).
> Works nicely and elegantly -

- ... see examples on next pages.
$>$ More elegantly - if analytically possible:
- Generation via "inversion of cumulative distribution function"

Let $f(t)$ be the function to simulate:
First build the cumulative distribution ("Stammfunktion")

Build the inverse of $F(x), F^{-1}(Z)$.
Proposition: With Z from [0.;1.] $\mathrm{F}^{-1}(\mathrm{Z})$ is distributed as $f(\mathrm{t})$.

Proof in many books and lectures ;-).
> Works nicely and elegantly -

- ... see examples on next pages.
$f(t)$
$F(x)=\int_{0}^{x} f(t) d t$

$$
x_{i}=F^{-1}\left(Z_{i}\right)
$$

Take uniform numbers Z_{i} and use as "random" number x_{i}.

GENERATING DISTRIBUTIONS (3)

Generating distributions

$$
\begin{gathered}
x_{i}=F^{-1}\left(Z_{i}\right) \quad Z \in[0 . ; 1 .] \\
F^{-1}\left(Z_{i}\right)=Z_{i}
\end{gathered}
$$

linear function

$$
F^{-1}\left(Z_{i}\right)=\sqrt{Z_{i}}
$$

quadratic function

$$
F^{-1}\left(Z_{i}\right)=\sqrt[3]{Z_{i}}
$$

$$
F^{-1}\left(Z_{i}\right)=\exp \left(Z_{i}\right)
$$

$$
F^{-1}\left(Z_{i}\right)=a+b \cdot \tan \left(\pi \cdot Z_{i}-1 / 2\right)
$$

$$
F^{-1}\left(Z_{i}\right)=-\ln Z_{i}
$$

MC INTEGRATION (1)

> Another application of hit\&miss: Calculating π using pebbles on the beach or helicopters in MC:

... invoking again the law of large numbers ...
$>$ Calculating π using pebbles on the beach or helicopters in Monte Carlo:

103:	3.056000
$10^{4}:$	3.132800
$10^{5}:$	3.145680
$10^{6}:$	3.141996
$10^{7}:$	3.141707
$10^{8}:$	\ldots
$\pi=3.141592653 \ldots$	

MC INTEGRATION (2)

$>$ Integration with Hit\&Miss method:

- Get random number R_{1} for x axis in interval [0.;20.] (here).
- Get random number R_{2} for y axis between 0 . and $c^{*} \max (\mathrm{f})$.
- Reject if $R_{2}>f\left(R_{1}\right)$ (point "above" function).
- Else accept.
\Rightarrow In principle comparison with area of known size!
$>$ Example: Landau distribution (energy loss of particles passing a
 thin layer of matter)
- Strongly peaked signal
- ... now do hit and miss ...

MC INTEGRATION (2)

I. Schorner-Saaenıus | Monte Carlo: Basics and applications | MC-PAD / Alliance Geant4 WS, 29 January 2010 | page 40

- Efficiency (ratio of hit/miss): 9\% for hits example!
- 91\% of "events" generated for the garbage
- Highly inefficient CPU usage!
\rightarrow Can we do better?

I. Scnorner-sadenıus | Monte Carlo: Basics and applications | MC-PAD / Alliance Geant4 WS, 29 January 2010 | page 41
> Remember function generation by hit\&miss: Increase efficiency by choosing better function maximum!

now try something similar to distribution generation ...
Choose $g(x) \sim 1 / x \ldots$
> Remember function generation by hit\&miss: Increase efficiency by choosing better function maximum!

Side effect: potential reduction of variance:

MC INTEGRATION (4)

$>$ Mathematically: Solve

$$
I=\int_{a}^{b} f(x) d x=(b-a) E(f(x))
$$

(Mean value theorem)
> Remember Law of Large Numbers:

$$
\tilde{E}(f(x))=\frac{1}{N} \sum_{i=1}^{N} f\left(u_{i}\right) \rightarrow \frac{1}{b-a} \int_{a}^{b} f(u) d u
$$

MC estimate converges to true integral:

$$
I \approx I_{M C}=\frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

> Remember Central Limit Theorem:

- MC estimate is asymptotically normally distributed, approaching Gaussian density with
\Rightarrow to decrease estimate uncertainty, increase N ! (or try to reduce the variance of the relevant function)
> Importance sampling: increase efficiency; start with `barely relevant' sampling
\Rightarrow no sense to sample where function $f(x)$ is 0 (or small).
\rightarrow extending the integration (and the underlying probability density) to regions which don't contribute is ... a waste of resources.
\rightarrow concentrate on the relevant regions, and invest more CPU time in them!

> Importance sampling: increase efficiency; start with 'barely relevant' sampling
\Rightarrow no sense to sample where function $f(x)$ is 0 (or small).
\rightarrow extending the integration (and the underlying probability density) to regions which don't contribute is ... a waste of resources.
\rightarrow concentrate on the relevant regions, and invest more CPU time in them!
\Rightarrow Some mathematics: [mean value theorem]

$$
I[f(x)]=(b-a) E[f(x)]
$$

$$
E[f(x)]=E_{h}[f(x)]=\int f(x) d x=\int f(x) h(x) d x
$$

Mostly assuming constant PDF ($\mathrm{h}(\mathrm{x})=1$ here)
> Importance sampling more rigorously:

$$
I[f(x)]=(b-a) E[f(x)]
$$

\rightarrow Introduce a better suited PDF $\mathrm{g}(\mathrm{x})$:

$$
\begin{aligned}
E_{h}[f(x)] & =\int f(x) h(x) d x=\int f(x) h(x) \frac{g(x)}{g(x)} d x \\
& =\int f(x) \frac{h(x)}{g(x)} g(x) d x \equiv \int f(x) w(x) g(x) d x \\
& =E_{g}[f(x) w(x)]
\end{aligned}
$$

- Thus we can calculate the integral I by
- Generating a sample x_{i} according to $g(x)$
- Using $\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \xrightarrow{n \rightarrow \infty} E_{h}[f(x)]$ get I as:

$$
\begin{aligned}
I[f(x)] & =(b-a) E_{h}[f(x)]=E_{g}[f(x) w(x)] \\
& =(b-a) \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) w\left(x_{i}\right)
\end{aligned}
$$

> Importance sampling more rigorously:

$$
I[f(x)]=(b-a) E[f(x)]
$$

\rightarrow Introduce a better suited PDF $\mathrm{g}(\mathrm{x})$:

$$
\begin{aligned}
E_{h}[f(x)] & =\int f(x) h(x) d x=\int f(x) h(x) \frac{g(x)}{g(x)} d x \\
& =\int f(x) \frac{h(x)}{g(x)} g(x) d x \equiv \int f(x) w(x) g(x) d x \\
& =E_{g}[f(x) w(x)]
\end{aligned}
$$

- Thus we can calculate the integral I by
- Generating a sample x_{i} according to $g(x)$
- Using

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \xrightarrow{n \rightarrow \infty} E_{h}[f(x)] \text { get I as: }
$$

$$
\begin{aligned}
I[f(x)] & =(b-a) E_{h}[f(x)]=E_{g}[f(x) w(x)] \\
& =(b-a) \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) w\left(x_{i}\right)
\end{aligned}
$$

[^1]
MC INTEGRATION (5)

> Comparison of MC integration with other numerical methods (from Hannes Jung):

- Monte Carlo: Hit \& Miss
- Trapezoidal Rule: approximate integral in subinterval by area of trapezoid below (above) curve
- Simpson quadrature: approximate by parabola

- Gauss quadrature: approximate by higher order polynomial
\rightarrow Especially for higher dimensions, MC integration wins very often!

method	err (1d)	error
MC	$n^{-1 / 2}$	$n^{-1 / 2}$
Trapez	n^{-2}	$n^{-2 / d}$
Simpson	n^{-4}	$n^{-4 / d}$
Gauss	$n^{-2 m+1}$	$n^{-(2 m-1) / d}$

> "MC generators": Computer programs to simulate "arbitrarily" complex physics following some distribution.

- Higher-order calculations, parton shower ...
- HERWIG, PYTHIA, etc.
$>$ Statistics: Markov chains etc.
> Detector simulation programs

- Simulate interactions of particles with the matter.
- ... for example for detector corrections.

[^2]
SUMMARY

> "MC methods": no unique definition, but ...

- ... invoking law of large numbers to approximate expectations ...
- ... making use of "random" numbers for sampling purposes.
$>$ (Pseudo)Random numbers:
- Necessary ingredient, but not too easy to obtain. Different methods with more or less good properties.
$>$ Generating distributions ...
- ... by means of hit\&miss or, for example, inversion of the cumulative function, ...
$>$ Integration as one of the main applications.
- ... hit and miss, ...
- ... importance sampling ...
$>$ Numerous applications
- ... in HEP
- ... and elsewhere.

[^0]: T. Schörner-Sadenius | Monte Carlo: Basics and applications | MC-PAD / Alliance Geant4 WS, 29 January 2010 | page 6

[^1]: T. Schörner-Sadenius | Monte Carlo: Basics and applications | MC-PAD / Alliance Geant4 WS, 29 January 2010 | page 48

[^2]: T. Schörner-Sadenius | Monte Carlo: Basics and applications | MC-PAD / Alliance Geant4 WS, 29 January 2010 | page 50

