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OUTLINE

> The Monte Carlo method
= Monte Carlo: What, why, and where?
> Random numbers
= True random versus pseudo-random ...
> Some mathematical basics
> Generating arbitrary distributions
= Hit&miss, inversion of cumulative distribution, ...
> MC integration
= Hit&Miss, importance sampling, ...

> Applications in HEP
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MONTE CARLO METHOD: DEFINITION

> Monte Carlo methods ... aclass of computational algorithms that rely on repeated
random sampling to compute their results. Monte Carlo
methods are often used when simulating physical and
mathematical systems. Because of their reliance on
repeated computation of random or pseudo-random
numbers, these methods are most suited to calculation by a
computer and tend to be used when it is infeasible or
impossible to compute an exact result with a
deterministic algorithm.

> So use MC when there is no (known) analytical solution to a
(mathematical or physical) problem:

= Difficult integrals, numerical analysis
= Complex systems with many degrees of freedom, natural phenomena
= Social or economical systems

= Higher-order processes in particle physics

> In the following, “MC method” denotes any algorithm that arrives, by the
use of “random” numbers, at the solution of a problem.
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MONTE CARLO METHOD: DEFINITION

> Monte Carlo methods:

= “ ... their methods (v. Neumann et al.) ... were aptly named after the international
gaming destination ...”

= “ ... after the War a wide range of sticky problems yielded to the new techniques ...”

= “ .. virtually impossible to find a succint definition of "Monte Carlo’ method ...”

= “ ... some authors prefer the term "stochastic simulation’ ...”

= “Monte Carlo is the art (sic!) of approximating an expectation by the sample mean of
a function of simulated random variables.”

= “Monte Carlo is about invoking laws of large numbers to approximate
expectations.”
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MONTE CARLO METHOD: APPLICATIONS
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PARADIGMATIC EXAMPLES

> Buffon’s needle: a question first posed in the 18th century by
Georges-Louis Leclerc, Comte de Buffon:

= Suppose we have a floor made of parallel strips of ‘—t’
wood, each of the same width t, and we drop a needle
of length | onto the floor. What is the probability that a/-. b
the needle will lie across a line between two strips? //I‘ \
> Calculating pi :

= Very amusing description in W. Krauth,

“Introduction To Monte Carlo Algorithms”
(arXiv:cond-mat/9612186v2)
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(PSEUDO)RANDOM NUMBERS

> “Random” numbers are at the heart of the MC method.

> A sequence of random numbers is a set of numbers that have
nothing to do with the other numbers in the sequence.

> There is no unique random number (sequence)!
> S0 ... how to get random numbers usable for our purposes?

> One (very attractive) option: Gambling in Monaco!
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(TRUE) RANDOM NUMBERS

> To obtain true random numbers ...

> ... use some classical chaotic system like roulette, lotto, dices, coin
tossing...

= In principle, knowing all initial conditions, such a system is predictable — however, it is
extremely sensitive - true random ...

Photon source Semi-transparent mirror

> ...oruse “modern physics”

random processes like o - ‘ S0% i

= radioactive decay, ...

= ... or other quantum mechanical Photon 50%
process. Nice example: Photons _ Single-photon detectors
on semi-transparent mirror!
=» available and tested by DESY

summer student! S0

> However, for typical nowadays applications (implementation in
computer programs) all these true random number principles are too,
slow, to cumbersome, not easily automatised, etc.
=>» go for “second-best”. pseudo-random numbers!
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(TRUE) RANDOM NUMBERS

RANDOM.ORG - True Random Number Service

| http://www.random.org/

=~ Another nice example:
random.org
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PSEUDO-RANDOM NUMBERS

> ... are a sequence of numbers that ... well, APPEAR to be random,

= but where in fact each number is derived from the previous N numbers by a well-
defined algorithm.

> More precisely, you want to generate integers | in the interval [0;M]
and from that derive R; = | /M.

> Numerous algorithms developed, for example “Middle Square
Algorithm” (J. v. Neumann, 1946):

= Start with a number of 10 digits, square it, take the middle 10 digits as the next
number etc.

= More complex algos don’t necessarily lead to better results. Best to use algorithms
that are well understood in their degree of “randomness”.

> Nice example: “Linear congruential generator”:
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PSEUDO-RANDOM NUMBERS

Example for linear congruential generator: I,=10,a=2,¢c=5, m=20:

|, =mod(2*10 + 5, 19) = 6
l, = mod(2*6 + 5, 19) = 17
l; = mod(2*17 + 5, 19) = 1
|, =mod(2*1 + 5, 19) = 7
l; = mod(2*7 + 5, 19) = 0
5

lg = ... , 15,16, 18, 3,11, 8, 2,9, 4, 13,12, 10, 6, ...

=> After m steps, the sequence repeats!

Note: Criteria for randomness:
= uniformity

= correlation tests

= sequence-up / sequence-down tests
= gap tests

= random walk tests
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LINEAR CONGRUENTIAL GENERATOR

> By definition, the LCG generator has a
maximum “random” sequence of length m.

= After that, repetition - strong correlation of generated numbers:
> Example for demonstration (I, = 4711, a = 205, ¢ = 29573, m = 139968).

= Shown is the correlation between pairs of numbers (R ;R .4):
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LINEAR CONGRUENTIAL GENERATOR

> By definition, the LCG generator has a
maximum “random” sequence of length m.

= After that, repetition - strong correlation of generated numbers:
> Example for demonstration (I, = 4711, a = 205, ¢ = 29573, m = 139968).

= Shown is the correlation between pairs of numbers (R ;R .4):

0.3
0.2
0.1

%01 02 03 04 0.2

> ... let's now assume we have random numbers ...
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(MATHEMATICAL) BASICS

> Expectation value E(f) or u: defined as

the average/mean value of function f:
(“mean value theorem”)

=» close connection to integration (later) etc.!

> Variance V(f) (~standard deviation ¢2):

=> relevance: want small uncertainties on MC predictions / results
=» aim to reduce variance (not really covered here).
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(MATHEMATICAL) BASICS

> Law of large numbers: For large enough statistics, relative frequency of
an outcome approaches probability.

= For MC relevant (integration!): Choose N numbers u; randomly with uniform
probability density in interval [a;b], evaluate f(u;) for each u;:

For large enough N, the Monte Carlo
estimate of the integral converges to
the correct answer.

> Central limit theorem: For large N, the sum of N independent random
variables is ALWAYS normally (Gaussian) distributed!

=» This outcome is independent of the original distributions of the x;!
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(MATHEMATICAL) BASICS

> Simple example: sum of n random numbers x; from [0;1] :
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(MATHEMATICAL) BASICS

> Simple example: sum of n random numbers x; from [0;1] :

IS
N
-l
N
=N
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(MATHEMATICAL) BASICS

> Simple example: sum of n random numbers x; from [0;1] :

IS
N
-
N
=N

> To generate normal distribution
centered at O, variance 1, use:

more generally:
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(MATHEMATICAL) BASICS

° i 4 i 4 i ° L a1 i 4 i

-4 -2 L 2 4 -4 -2 L 2 4
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(MATHEMATICAL) BASICS

> Bohm&Zech: Einfuhrung in f(x) |
die Statistik und Messwertanalyse: o« A TR B n=25
/ \ \
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GENERATING DISTRIBUTIONS (1)

> Assume you want to create events according to some distribution f(x)!

> Brute force or Hit&Miss method:

= Works always — but not very elegant and not always efficient!

4 T T T T l T T T T | T T T T | T T T T | T T T T | T T T T
35 ¢
3

2.5

15 =
1 — —

05 - ]

0—|||||||||||||||l|||||||||||||
0 0.5 1 1.5 2 2.5 3
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GENERATING DISTRIBUTIONS (1)

> Assume you want to create events according to some distribution f(x)!

> Brute force or Hit&Miss method:

= Works always — but not very elegant and not always efficient!

* Find maximum c*max(). - c*max(f)

3.5

3

2.5

2 Lo*
15 ]
L b E

05 - ]

0—|||||||||||||||||||||||||l|||
0 0.5 1 1.5 2 2.5 3
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GENERATING DISTRIBUTIONS (1)

> Assume you want to create events according to some distribution f(x)!

> Brute force or Hit&Miss method:
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GENERATING DISTRIBUTIONS (1)

> Assume you want to create events according to some distribution f(x)!
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GENERATING DISTRIBUTIONS (1)
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GENERATING DISTRIBUTIONS (1)

> Assume you want to create events according to some distribution f(x)!

> Brute force or Hit&Miss method:

= Works always — but not very elegant and not always efficient!

4 T T T T I T T T T

- c*max(f)

3.5

f(x) -

N
15 -
N

0.5 -
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GENERATING DISTRIBUTIONS (1)

> Brute force or Hit&Miss method:

= Preferred if no simple analytical solution exists!
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GENERATING DISTRIBUTIONS (2)

> Modified brute force or Hit&Miss method:

= Improve efficiency by variable transformation or better adjusted estimate of
maximum!

3.5
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GENERATING DISTRIBUTIONS (2)

>

Modified brute force or Hit&Miss method:

3.5

25

1.5

0.5

Improve efficiency by variable transformation or better adjusted estimate of

maximum!
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GENERATING DISTRIBUTIONS (3)

> More elegantly — if analytically possible:

= Generation via “inversion of cumulative distribution function”

> Works nicely and elegantly -

= ... see examples on next pages.
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GENERATING DISTRIBUTIONS (3)

> More elegantly — if analytically possible:

= Generation via “inversion of cumulative distribution function”
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GENERATING DISTRIBUTIONS (3)
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MC INTEGRATION (1)

> Another application of hit&miss: A S
Calculating 1T using pebbles on . ; .
the beach or helicopters in MC: : R :

Area = /‘=4/1T9ND/N.
Area ‘ *(a/2)? = 4*N ./ N ]

.. invoking again the law of large numbers ...
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MC INTEGRATION (1)

> Calculating 11 using pebbles on the beach or helicopters in Monte Carlo:
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103;
104;
10°;
1068:
107:
108;

3.056000
3.132800
3.145680
3.141996
3.141707

= 3.141592653...



MC INTEGRATION (2)

> Integration with Hit&Miss method:

0.25

= Get random number R, for x axis : h
in interval [0.;20.] (here). [ |

0.2 — -

= Get random number R, for y axis i
between 0. and c*max(f).

015 — -

= Reject if R, > f(R,) (point “above”
function).

= Else accept. 01

In principle comparison with area :
of known size! gl

> Example: Landau distribution
(energy loss of particles passing a
thin layer of matter)

10 12 14 16 18 20

= Strongly peaked signal

= ... now do hit and miss ...
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MC INTEGRATION (2)

LIS e I B I

10 12 14 16 18 20
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MC INTEGRATION

LIS e I B I
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MC INTEGRATION (2)
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MC INTEGRATION
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MC INTEGRATION

= Efficiency (ratio of hit/miss): 9% for hits example!
= 91% of “events” generated for the garbage
= Highly inefficient CPU usage!

=» Can we do better?

01

N TR

S po s o _-;_._,_-_
. L, R ey € : Bt 3 B
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> e - . v s

o
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1820
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MC INTEGRATION (3)

> Remember function generation by hit&miss: Increase efficiency by
choosing better function maximum!

12 e
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MC INTEGRATION (3)

> Remember function generation by hit&miss: Increase efficiency by
choosing better function maximum!

12 e . : . e

Side effect: potential
reduction of variance:
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MC INTEGRATION (4)

> Mathematically: Solve

(Mean value theorem)

> Remember Law of Large Numbers:

_ ‘ 1 )

MC estimate converges to true integral:

> Remember Central Limit Theorem:

= MC estimate is asymptotically normally
distributed, approaching Gaussian density with

-» to decrease estimate uncertainty, increase N!
(or try to reduce the variance of the relevant function)
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MC INTEGRATION (4)

> Importance sampling: increase efficiency; S S A AL AR E
start with "barely relevant’ sampling 5 Lo E

s F§ 3

<> no sense to sample where 3E E
function f(x) is O (or small). 2 | =

= extending the integration (and the under-
lying probability density) to regions which 0
don’t contribute is ... a waste of resources.

=» concentrate on the relevant regions, and invest A RRRE LLRRS RLLE LR
more CPU time in them! 5 F

(/)
|
EERIREEREREEREERENE AR NN

:
0 0.5 1 1.5 2
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MC INTEGRATION (4)

6 llllllllllllllllllll_

T

> Importance sampling: increase efficiency;
start with “barely relevant’ sampling 5

~»no sense to sample where 3
function f(x) is O (or small). 2

TTTT llllllllllllllllllllll

= extending the integration (and the under-
lying probability density) to regions which 0
don’t contribute is ... a waste of resources.

=» concentrate on the relevant regions, and invest S RS RARRE RELRE LERESE
more CPU time in them! 5 F
3
4

- Some mathematics:
[mean value theorem]

1 f(x)]=(b-a)E[f )]

(/)
|
EERIREEREREEREERENE AR NN

o
0 0.5 1 1.5 2
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MC INTEGRATION (4)

6 LI LI | LI LI I |
> Importance sampling ~ SR ! ' E
more rigorously: I[f (x)] - (b_a)E[f (x)] ° Fe E
=>» Introduce a better suited PDF g(x): 4 -

w
IIlIIllllllllllllllllllllll

—E f(x,) = E,[f(0)]

0
0 0.5 1 1.5 2
6 F | | | I
= Thus we can calculate the integral | by 5 E, E
= Generating a sample x; according to g(x) 4 —'
= Using - get | as: 3

0 0.5 1 1.5 2
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MC INTEGRATION (4)

= Importance sampling _
more rigorously: 1[£(x)]=(b-a)E[f(x)]

=» Introduce a better suited PDF g(x):

= LA LR R
= Thus we can calculate the integral | by 5 E, E
= Generating a sample x; according to g(x) 4 —'
= Using Ho get | as: 3 F
—2 f(x) = E,[f(0)] .
¥:
0: ||||||||1|:
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MC INTEGRATION (5)

> Comparison of MC integration with other Ssapezatl Sule
numerical methods (from Hannes Jung): fx)
= Monte Carlo: Hit & Miss l | 1 I
= Trapezoidal Rule: approximate integral i B % A

in subinterval by area of trapezoid
below (above) curve

= Simpson quadrature: approximate by
parabola

= Gauss quadrature: approximate by
higher order polynomial

method | err (1d) | error
MC n— 1/2 n_ 1/2
=>» Especially for higher dimensions, Trapez | n? r,-zl—z.{d
MC integration wins very often! Simpson | n~ 4 n~4d
Gauss '72,_27”‘*'1 n_ (2m—1)/d
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MC IN HEP

£ ”. 7] S DL AL B BN L B
MC gen?rat(_)rs : C”omputer programs to g e ZEUS (82 pb™) dijets
simulate “arbitrarily” complex physics 5 10 —LEPTO
following some distribution. 10°
= Higher-order calculations, parton shower ... 10
= HERWIG, PYTHIA, etc. 1
Statistics: Markov chains etc. 1000 2000 3000 4000 S000

Q;, (GeV?)
Detector simulation programs

= Simulate interactions of particles with the matter.

= ... for example for detector corrections.

CMS at
LHC, CERN
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SUMMARY

> “MC methods”: no unique definition, but ...
= ... invoking law of large numbers to approximate expectations ...
= ... making use of “random” numbers for sampling purposes.

> (Pseudo)Random numbers:

= Necessary ingredient, but not too easy to obtain. Different methods with more or less
good properties.

> Generating distributions ...

= ... by means of hit&miss or, for example, inversion of the cumulative function, ...
> Integration as one of the main applications.

= ... hitand miss, ...

= ... importance sampling ...
= Numerous applications

= ...in HEP

= ... and elsewhere.
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