
Geant4 internal Classes and
Objects

Gunter Folger / CERN

MC-PAD, DESY/Hamburg

28-30 January 2010

User Action & Information
Classes

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Contents
n Internal Objects

q Run and Event
q Track and Step
q StepPoint
q Dynamic Particle

n UserAction classes
q Run and Event
q Track and Step

n Track Stack management

n UserInformation classes
q G4VUserEventInformation

q G4VUserTrackInformation

q G4VUserPrimaryVertexInformation

q G4VUserPrimaryParticleInformation

q G4VUserRegionInformation

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Acknowledgement
n Most of the slides shown were originally

created by Makoto Asai / SLAC

n I wish to thank Makoto for allowing me to re-
use his material.

n Without his expertise in the topics covered I
would not have managed.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Introduction (1)
Extract information from G4 internal objects

n Simulation is successively
split into

n Run consists of

n Event(s), consists of

n Particle(s) transported in

n Steps through detector
setup,

n depositing energy (
ionization),

n and creating secondaries

n Corresponding / related
Objects

n G4RunManager, G4Run

n G4Event

n G4Track, G4DynamicParticle

n G4Step, G4StepPoint

n G4Trajectory

n G4Stack

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Introduction (2)
n User at each moment has possibility to take control

or access information via UserAction classes
q G4UserRunAction Actions for each Run

q G4UserEventAction Actions for each Event

q G4UserTrackingAction Actions for each Track

q G4UserSteppingAction Actions for each Step

q G4UserStackingAction Tracks Stack management

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Introduction (3)
n User can replace Geant4 classes by providing his

own classes derived from the base classes:
q G4Run

q G4Trajectory

q G4VTrajectoryPoint

n User can attach optional User Information classes to
q G4Event

q G4Track

q G4PrimaryVertex

q G4Region

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Terminology (jargons)
n Run, event, track, step, step point

n Track �� trajectory,
Step �� trajectory point

n Process
q At rest, along step, post step

MCPAD course, DESY, Hamburg
28-30 January 2010

Gunter Folger

Geant4 internal classes

User Action classes

and corresponding

RunManager in Geant4
n G4RunManager class manages processing a run

q Must be created by user

q May be user derived class

q Must be singleton

n User must register in RunManager using
q SetUserInitialization() method

n Geometry

n Physics

q SetUserAction() method

n Event generator

q Optional UserAction objects

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Run in Geant4
n Run is a collection of events

q A run consists of one event loop
q Starts with a /run/beamOn command.

n Within a run, conditions do not change, i.e. the user cannot
change
q detector setup
q settings of physics processes

n At the beginning of a run, geometry is optimized for navigation
and cross-section tables are calculated according to materials
appear in the geometry and the cut-off values defined.

n Run is represented by G4Run class or a user-defined class
derived from G4Run.
q A run class may have a summary results of the run.

n G4RunManager is the manager class
n G4UserRunAction is the optional user hook.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Optional User Run Action Class
n G4UserRunAction

q G4Run* GenerateRun()
n Instantiate user-customized run object

q void BeginOfRunAction(const G4Run*)
n Define histograms

q void EndOfRunAction(const G4Run*)
n Analyze the run
n Store histograms

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Event in Geant4
n An event is the basic unit of simulation in Geant4.
n At beginning of processing, primary tracks are generated. These

primary tracks are pushed into a stack.
n A track is popped up from the stack one by one and “tracked”.

Resulting secondary tracks are pushed into the stack.
q This “tracking” lasts as long as the stack has a track.

n When the stack becomes empty, processing of one event is over.
n G4Event class represents an event. It has following objects at

the end of its (successful) processing.
q List of primary vertices and particles (as input)
q Hits and Trajectory collections (as output)

n G4EventManager class manages processing an event.
n G4UserEventAction is the optional user hook.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Optional User Event Action Class
n G4UserEventAction

q void BeginOfEventAction(const G4Event*)
n Event selection

q Using information from event generator, vertices, primary particles

n Optionally attach G4VUserEventInformation object
q void EndOfEventAction(const G4Event*)

n Output event information
n Analyse event

q Access to hits collection via G4Event::GetHCofThisEvent()
q Acces digitisation collection via G4Event:: GetDCofThisEvent()

n Fill histograms

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Track in Geant4
n Track is a snapshot of a particle.

q It has physical quantities of current instance only. It does not
record previous quantities.

q Step is a “delta” information to a track. Track is not a collection of
steps. Instead, a track is being updated by steps.

n Track object is deleted when
q it goes out of the world volume,
q it disappears (by e.g. decay, inelastic scattering),
q it goes down to zero kinetic energy and no “AtRest” additional

process is required, or
q the user decides to kill it artificially.

n No track object persists at the end of event.
q For the record of tracks, use trajectory class objects.

n G4TrackingManager manages processing a track, a track is
represented by G4Track class.

n G4UserTrackingAction is the optional user hook.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Tracking User Action Classes
n G4UserTrackingAction

q void PreUserTrackingAction(const G4Track*)
n Decide if trajectory should be stored or not
n Create user-defined trajectory

q void PostUserTrackingAction(const G4Track*)
n Delete unnecessary trajectory

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Step in Geant4
n Step has two points and also “delta” information of a particle

(energy loss on the step, time-of-flight spent by the step, etc.).
q Point is represented by G4StepPoint class

n Each point knows the volume (and material). In case a step is
limited by a volume boundary, the end point physically stands on
the boundary, and it logically belongs to the next volume.
q Because one step knows materials of two volumes, boundary

processes such as transition radiation or refraction could be
simulated.

n G4SteppingManager class manages processing a step, a step is
represented by G4Step class.

n G4UserSteppingAction is the optional user hook.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Post-step point

Step

Boundary

Pre-step point

Stepping User Action Class
n G4UserSteppingAction

q void UserSteppingAction(const G4Step*)
n Change status of track

q Kill / suspend / postpone the track

n Draw the step (for a track not to be stored as a trajectory)

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Track status

n At the end of each step, according to the processes involved, the state of a track
may be changed.
q The user can also change the status in UserSteppingAction.
q Statuses shown in blue are for users only, i.e. Geant4 kernel won’t set them.

n fAlive
q Continue the tracking.

n fStopButAlive
q The track has come to zero kinetic energy, but still AtRest process to occur.

n fStopAndKill
q The track no longer exists --it has decayed, interacted or gone out of the world boundary.
q Secondaries will be pushed to the stack.

n fKillTrackAndSecondaries
q Kill the current track and also associated secondaries.

n fSuspend
q Suspend processing of the current track and push it and its secondaries to the stack.

n fPostponeToNextEvent
q Postpone processing of the current track to the next event.
q Secondaries are still being processed within the current event.

StepPoint in Geant4
n Two step point objects attached to step

q Pre-step point and post-step point

n G4StepPoint has information of track
representing a particle at this point
q Time (global event time, local, proper time since

creation of particle

q Position, kinetic energy, momentum

q Material

q …

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

n Step status is attached to G4StepPoint to indicate why that particular step was determined.
q Use “PostStepPoint” to get the status of this step.
q “PreStepPoint” has the status of the previous step.

n fWorldBoundary
q Step reached the world boundary

n fGeomBoundary
q Step is limited by a volume boundary except the world

n fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc
q Step is limited by a AtRest, AlongStep or PostStep process

n fUserDefinedLimit
q Step is limited by the user Step limit

n fExclusivelyForcedProc
q Step is limited by an exclusively forced (e.g. shower parameterization) process

n fUndefined
q Step not defined yet

n If you want to identify the first step in a volume, pick fGeomBoudary status in PreStepPoint.
n If you want to identify a step getting out of a volume, pick fGeomBoundary status in

PostStepPoint

Step status

Step

PreStepPoint PostStepPoint

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Recap – User action classes
n All needed UserAction classes

q must be constructed in main()
q must be provided to the RunManager using SetUserAction() method

n One mandatory User Action class
q Event generator must be provided
q Event generator class must be derived from

G4VUserPrimaryGeneratorAction
n List of optional User Action classes

q G4UserRunAction
q G4UserEventAction
q G4UserTrackingAction
q G4UserSteppingAction
q G4UserStackingAction

Time for exercise
n Exercise 1.2.1

n main() has UserAction added.
q What G4UserEventAction is used for?

q What G4UserRunAction is used for?

n Understand
EventAction::EndOfEventAction(...)

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Backup......

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Summary
n Overview of the ‘kernel’ classes involved in

simulation
n User action classes allow user to control simulation

or get information and results
q Action classes for event generation, run, event, track, and

step

n Stack management allows to order priority of
simulation of particles

n User information classes allow to keep arbitrary
information
q For events, tracks, primary vertex and particles, and for

region.

MCPAD course, DESY,
Hamburg 28-30 January
2010

Gunter Folger

Geant4 Track Stack

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Track stacks in Geant4
n By default, Geant4 has three track stacks.

q "Urgent", "Waiting" and "PostponeToNextEvent"
q Each stack is a simple "last-in-first-out" stack.
q User can arbitrary increase the number of stacks.

n A Track is popped up only from Urgent stack.
n Once Urgent stack becomes empty, all tracks in

Waiting stack are transferred to Urgent stack.
n Utilizing more than one stacks, user can control the

priorities of processing tracks without paying the
overhead of "scanning the highest priority track".
q Proper selection/abortion of tracks/events with well

designed stack management provides significant efficiency
increase of the entire simulation.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Optional User Action Classes (3)
G4UserStackingAction
n User has to implement three methods.

q G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)
n Invoked every time a new track is pushed to G4StackManager.
n Classification

q fUrgent - pushed into Urgent stack
q fWaiting - pushed into Waiting stack
q fPostpone - pushed into PostponeToNextEvent stack
q fKill - killed

q void NewStage()
n Invoked when Urgent stack becomes empty and all tracks in Waiting

stack are transferred to Urgent stack.
n All tracks which have been transferred from Waiting stack to Urgent

stack can be reclassified by invoking stackManager->ReClassify()
q void PrepareNewEvent()

n Invoked at the beginning of each event for resetting the classification
scheme.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Stacking mechanism

Event Manager

Tracking
Manager

Stacking
Manager

User Stacking
Action

Urgent
Stack

Waiting
Stack

Postpone To
Next Event

Stack

Push

Pop
Push

Push

Push

Pop

Classify

secondary
and suspended

tracks

Process
One
Track

primary
tracks

RIP

Deleted

Transfer

NewStage
Urgent
Stack

Waiting
Stack

Temporary
Stack

Reclassify

Pop

End Of
Event

Postpone To
Next Event

Stack

Transfer

Prepare
New Event

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Examples of stacking manipulations
a) Simulate all primaries before any secondaries.

q Classify all secondaries as fWaiting until Reclassify() method is invoked.
b) Roughly simulate the event before being bothered by low energy EM showers.

q Classify secondary tracks below a certain energy as fWaiting until Reclassify() method
is invoked.

c) Simulate secondaries before continuing to simulate primary
n Suspend a track on its fly. Then this track and all of already generated secondaries are

pushed to the stack.
n Given a stack is "last-in-first-out”, secondaries are popped out prior to the original

suspended track.
n Quite effective for Cherenkov lights

d) Simulate all tracks in a given region prior to other regions
n Suspend all tracks that are leaving from this region, and classify these suspended

tracks as fWaiting until Reclassify() method is invoked.
n Note that some back splash tracks may come back into this region later.

n See novice example N04 for implementation of a combination of a) and a
variation of d) in ExN04StackingAction class.

MCPAD course, DESY,
Hamburg 28-30 January
2010

Gunter Folger

Attaching User Information to
selected Geant4 classes

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Attaching user information to some
Geant4 kernel classes
n Abstract classes

q You can use your own class derived from provided base class
q G4Run, G4VTrajectory, G4VTrajectoryPoint

n Other examples: G4VHit, G4VDigit
n Concrete classes

q You can attach a user information object
n G4Event - G4VUserEventInformation
n G4Track - G4VUserTrackInformation
n G4PrimaryVertex - G4VUserPrimaryVertexInformation
n G4PrimaryParticle - G4VUserPrimaryParticleInformation
n G4Region - G4VUserRegionInformation

q User information object is deleted when associated Geant4
object is deleted.

q Objects are managed, but not used by Geant4

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

UserInformation classes (1)
n G4VUserEventInformation

q Additional data user wants to store for the event
n Only Print() method is required

q User needs to register an instance in his
G4UserEventAction class indirectly with G4Event

q Using
G4EventManager::SetUserInformation(G4VUserEvent
Information * ..)

q Cannot register directly in G4Event, as this is a const pointer

n Get previously registered object using GetUserInformation()
from G4Event or G4EventManager

q Object is deleted when G4Event object is deleted

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

UserInformation classes (2)
n G4VUserTrackInformation

q Data user want to keep for track, and not in trajectory
n Only Print() method is required

q Pointer to UserInformation object is kept in G4Track
n should be set from G4UserTrackingAction indirectly via
n G4TrackingManager::SetUserInformation(G4VUserTrackInfor

mation * ..)
§ Cannot register directly in G4Track, as this is a const pointer

n Get previously registered object using GetUserInformation()
from G4Track or G4TrackManager

q Object is deleted when G4Track object is deleted

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

UserInformation classes (3)
n G4VUserPrimaryVertexInformation

q Attach information to G4PrimaryVertex
n G4VUserPrimaryParticleInformation

q Attach information to G4PrimaryParticle
n G4VUserRegionInformation

q Attach information to G4Region
n Us Set/Get-UserInformation methods in

G4PrimaryVertex, …, to attach object.

MCPAD course, DESY,
Hamburg 28-30 January
2010

Gunter Folger

Transporting a Particle

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Particle in Geant4
n A particle in Geant4 is represented by three layers of classes.
n G4Track

q Position, geometrical information, etc.
q This is a class representing a particle to be tracked.

n G4DynamicParticle
q "Dynamic" physical properties of a particle, such as momentum, energy,

spin, etc.
q Each G4Track object has its own and unique G4DynamicParticle object.
q This is a class representing an individual particle.

n G4ParticleDefinition
q "Static" properties of a particle, such as charge, mass, life time, decay

channels, etc.
q G4ProcessManager which describes processes involving to the particle
q All G4DynamicParticle objects of same kind of particle share the same

G4ParticleDefinition.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Tracking and processes
n Geant4 tracking is general. It is independent

of
q the particle type
q the physics processes attached to a particle

n It gives the chance to all processes
q To contribute to determining the step length
q To contribute any possible changes in physical

quantities of the track
q To generate secondary particles
q To suggest changes in the state of the track

n e.g. to suspend, postpone or kill it.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Processes in Geant4
n Each particle has its own list of applicable processes.

q At each step, all processes for the particle are asked to propose a physical
interaction lengths.

q The process which requires the shortest interaction length (in space-time)
limits the step.

q A combination of processes including the step limiting process is invoked
n Each process has one or combination of the following natures.

q AtRest
n e.g. muon decay at rest

q AlongStep (a.k.a. continuous process)
n e.g. Cerenkov process

q PostStep (a.k.a. discrete process)
n e.g. decay on the fly

n In Geant4, particle transportation is a process as well,
q a particle “interacts” with geometrical volume boundaries and field of any

kind.
q Because of this, shower parameterization process can take over from the

ordinary transportation without modifying the transportation process.

Stacking User Action Class
n G4UserStackingAction

q Manipulate track stack,
q void PrepareNewEvent()

n Reset priority control

q G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track*)
n Invoked every time a new track is pushed
n Classify a new track -- priority control

q Urgent, Waiting, PostponeToNextEvent, Kill

q void NewStage()
n Invoked when the Urgent stack becomes empty
n Change the classification criteria
n Event filtering (Event abortion)

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Trajectory and trajectory point (1)
n Track does not keep its trace. No track object persists at the end

of event.
n G4Trajectory is the class which copies some of G4Track

information.
n G4TrajectoryPoint is the class which copies some of G4Step

information.
q G4Trajectory has a vector of G4TrajectoryPoint objects.
q At the end of event processing, G4Event has a collection of

G4Trajectory objects.
n /tracking/storeTrajectory must be set to 1.

n G4Trajectory and G4TrajectoryPoint objects persist till the end of
an event
q Be careful not to store too many trajectories, memory growth.

n E.g. avoid for high energy EM shower tracks.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Trajectory and trajectory point (2)
n Keep in mind the distinct classes conceptually

corresponding
q G4Track ß à G4Trajectory
q G4Step ß à G4TrajectoryPoint

n G4Trajectory and G4TrajectoryPoint as provided by
Geant4 store only the minimum information.
q You can create your own trajectory / trajectory point

classes to store information you need.
q User classes must be derived from G4VTrajectory and

G4VTrajectoryPoint base classes.
q Do not use G4Trajectory nor G4TrajectoryPoint concrete class

as base classes unless you are sure not to add any additional
data member.

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

MCPAD course, DESY,
Hamburg 28-30 January 2010 Gunter Folger

Caveat: Use of G4Allocator
in G4Trajectory, G4TrajectoryPoint
n Instantiation / deletion of an object is a heavy operation.

q It may cause a performance concern, in particular for objects that are
frequently instantiated / deleted.
n E.g. hit, trajectory and trajectory point classes

n G4Allocator is provided to ease such a problem.
q It allocates a chunk of memory space for objects of a certain class.

n Please note that G4Allocator works only for a concrete class.
q It works only for “final” class.
q It does NOT work for a base class, in case you add a data member to your

concrete class.
n Do NOT use Geant4G4Trajectory, G4TrajectoryPoint as your base

class. Nor use any example concrete hit classes as base class.
q These classes actually use G4Allocator.
q It causes a memory leak

n if you derive your class from such classes AND add a data member.
q We are discussing about a protection against such incorrect use.

