# **Colliders for b/c/tau production**

Bondar Alex Budker INP/Novosibirsk State University Novosibirsk

ECFA, 16 November, 2018, CERN

### B-Factories: High luminosity asymmetric-energy e⁺e⁻ colliders (PEP-II/BABAR, KEKB/Belle),

operating at  $E_{cMS} \sim m_{Y(4S)} c^2 = 10.58 \, GeV$  to produce  $e^+ e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ 



#### SuperKEKB



### Final Target

Target Luminosity: 8 x 1035 cm-2 s-1

40 times luminosity as high as KEKB



#### SuperKEKB project

Phase 1 : Feb. 8 - June 28, 2016 Phase 2 : March 19 - July 17, 2018 Phase 3 : March 11, 2019? - ?





#### 🛚 First collisions, 26 April, 2018 🎽











Beam-Beam  
Parameter
$$\xi_{y\pm} = \frac{r_e N_{\mp}}{2\pi \gamma_{\pm}(\sigma_{x,eff}^*)} \sqrt{\frac{\beta_y^*}{\varepsilon_y}}$$
 $\beta_y^* \to \text{small}$  $\xi_y \to \text{small}$  $L \to \text{large}$ Luminosity $L = \frac{N_- N_+ n_b f_0}{4\pi (\sigma_{x,eff}^*) \sqrt{\varepsilon_y \beta_y^*}} \simeq \frac{\gamma_{\pm}}{2er_e} \frac{I_{\pm} \xi_{y\pm}}{\beta_y^*}$ Final Target $I_{\pm} \to \times 2$  $\beta_y^* \to \times 1/20$  $\xi_y \to \times 1/20$  $\xi_y \to \times 1$ 

3

Ordinary collision (KEKB)

KEKB





measurement at Belle

#### Nano-Beam (SuperKEKB Phase2)



I.Adachi, T.Iijima

 $\sigma = 550 \ \mu m$ 



#### Verification of nano-beam scheme

- Large crossing-angle, low emittance, and low beta at the IP
- Luminosity increases even though  $\beta_y^*$  is smaller than  $\sigma_z$ .
- Beam-Beam parameter, ξ<sub>y</sub> > 0.03
- L = 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> at 1 [A] beam current in the LER



#### **History of Phase 2 Commissioning**





Y.Ohnishi, eeFACT 2018, September 24, 2018



### Particle identification in 2018

 Central Drift Chamber dE/dx & Time of propagation Cherenkov patterns - 2018 data



Entries/(1 [MeV/c

400

L dt = 90 pb

CDC dE/dx



Kinematically identified kaon from D\*+ in TOP; x vs t pattern (mapping of Cherenkov ring)



# Beauty "Rediscovery" (cut-based analysis)

VOLUME 50, NUMBER 12

is 5274.2 ± 1.9 ± 2.0 MeV.

- Recreating CLEO & ARGUS
  - > 200 B candidates in hadronic modes (470/pb)
  - $\sim$ 14 B  $\rightarrow$  D\* e v found (250/pb)



PHYSICAL REVIEW LETTERS

Observation of Exclusive Decay Modes of b-Flavored Mesons

B-meson decays to final states consisting of a D<sup>0</sup> or D<sup>+±</sup> and one or two charged pions have been observed. The charged-B mass is 5270.8 ± 2.3 ± 2.0 MeV and the neutral-B mass

21 MARCH 1983

40.7 pb<sup>-1</sup>







COSUBRY



### **Targets in Phase 3**

- Install additional collimators to reduce the backgrounds
- Install the whole silicon vertex tracker
- Restart the operations in March 2019
- Tune the optics
- Gradually increase the number of bunches and the bunch current

• Gradually decrease the vertical size of the bunches at the IP

### Successful marriage of PXD and SVD







### SVD commissioning w/ cosmic ray

# SuperKEKB/Belle II Plan

### Phase I (w/o QCS/Belle II)

 Accelerator basic tuning with single beams

### Phase 2 (w/ QCS/Belle II but w/oVXD)

- Verification of nano-beam scheme
- Understand beam background

### Phase 3 (w/ full detector)

- Iab<sup>-1</sup> after I year
- 5ab<sup>-1</sup> by ~2020
- 50ab<sup>-1</sup> by ~2025





Budker Institute of Nuclear Physics Siberian Branch Russian Academy of Sciences (BINP SB RAS)

#### Super Charm-Tau Factory

CONCEPTUAL DESIGN REPORT PART TWO (collider, injector)

[very preliminary draft]

Novosibirsk - 2018

https://ctd.inp.nsk.su/wiki/index.php/CDR

### 30 Years of t-c facility in China



#### BEPCI (1988-2005)

### $10^{31} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 10^{33} \text{cm}^{-2} \text{s}^{-1}$

### BEPCII (2006-now)

BESHI









### Features and limits of BEPCII/BESIII



- Threshold production
- Clean Signal, low background
- High efficiency and resolution

- limited Ecms range : 2-4.6 GeV
- Luminosity : 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
- No major upgrade proposal to date

### BEPCII/BESIII will end the mission in 8-10 years Super C/Tau factory projects – Novosibirsk(Russia)/Hefei(China)



### Layout & Solutions



### Beam-Beam

### $10^{35} \text{ cm}^{-2}\text{s}^{-1}, \xi_{v} \sim 0.12, \xi_{x} \sim 0.004 @ 2 \text{ GeV}$





LIFETRAC by Shatilov

### **R&D** activities











### Joint Workshop on future Cau-C

### December 4-7, 2018

Laboratoire de l'Accélérateur Linéaire Orsay, France

Spzio P2I

#### Expected physics reach Accelerator development tc factory detector solutions

arm factory

#### Program Committee

Marice Depini (DRTH LNC, Freecent and LAL Oracy Exgerny Levichev (BNP, Novosibink Rambei Lu (UST), Hele Ranping Ma ITP: Beijing Veronique Puil (LAL Oracy Luo Ging (UST), Hele Achille Staechi (LAL Oracy Tury Helenonov (BnP, Novosibink Vitaly Verbiory Birk Novosibink

#### Local Organising Committee

Vladislev Balagura (LRI Sergey Barsuk (LRI) Damir Bedrevic (LPT Cotherine Bourge (LAL) Valérie Brouilland (LAL) Valérie Brouilland (LAL) Valérie Brouilland (LAL) Enc Vostier (IPVC) Enc Vostier (IPVC)

http://workshop-tau-charm-factory.lal.in2p3.fr/

LAC SIPN LUL LPNHE

#### International Advisory Committee

Adrian Bevan (Queen Mary University, London) Fabrizio Bianchi (Torvio University) Hal-Yang Chang (Acodumic Sinica Tolwort) Michel Davier (LAL, Orsov) Francois le Diberder (LAL, Drsoy) Simon Eidelman (B/VP Novositivitat) Ioshihiro hunakoshi (SEK) Wolfgang Gradi (Mainz University Francesco Grancagnolo (WFN Leuce) of Mittin Color Yury Rudenko (WR Mostow Lucie Linssen (CERN) Alberto Lusiani (Scuole Normole Superiore, Pis Ryan Malchell Unclose University) latsaya Nakada (EPFL Louisme) Stephen Lars Olson /UCAS, Beying Halping Peng (USTC Herb) Antonio Pich (FK, Valencia University - CSIC) James Lambrecht Ritman (NPL Avelich) Pablo Roig Garces Conjector: Mexico Felix Sefforce (DES) Kiaoyan Shen (HEP, Bouto Alorsandee Variela (LAL, C Zbigniew Was (H/PAN, Crocow) Changemeng Yuan ShER Seying Zhengguo Zhao (USTC, Hefe) Binsong Zou (TTP, Sestinal



#### Stephane Monteil



# Muon (g-2) and VEPP-2000 (Novosibirsk)

Muon (g-2) is a long-standing question in flavor physics:  $a_{\mu}(exp) - a_{\mu}(SM) = (3.5 \div 4)\sigma$ 



- There has been highly successful program of machines with increased luminosity since the 1980s.
- The SuperKEKB colider and Belle II experiment will continue the tradition with performance at a new level:
  - 40-times higher luminosity with respect to the previous record,
  - the most advanced, 21<sup>st</sup>-century detector technology.
- This will enable Belle II to explore New Physics on the Luminosity/Intensity Frontier, which is different and complementary to the LHC high p<sub>T</sub> experiments, operating on the Energy Frontier.
- Competition and complementarity with the LHCb experiment.
- Phase-2 data-taking just finished:
  - The data show that both the collider and detector are performing well.
- We are ready to start a long physics run (Phase 3) in 2019, operating in the Super Factory mode:
  - extensive running of SuperKEKB with world's highest luminosity,
  - high-efficiency data-taking with the complete Belle II detector.

Super C-Tau R&D is in progress.

The lattice, which meet all main requirements (800 um beta-y, chromatic correction and DA, momentum bandwidth, longitudinal polarization, luminosity optimization for wide energy range, etc.) is ready. Detailed machine design and beam dynamics simulation is in progress. Civil construction is under way. We hope that funding of the project will start in 2020.

# Thank you!

# Heavy flavour data sets from colliders

σ(cc)

1.6 nb

1.6 nb

• SuperKEKB is the first new collider since the LHC.

σ(bb)

1.1 nb

1.1 nb

. . .

• Unique strengths in CKM metrology, rare and missing energy decays.

∫*L* dt

530 fb<sup>-1</sup>

1040 fb<sup>-1</sup>

0.5 fb<sup>-1</sup>

Expt.

Babar

Belle

|           | Observables                                                   | Expe | cted the. accu-                         | Expected         | Facility (2025) |
|-----------|---------------------------------------------------------------|------|-----------------------------------------|------------------|-----------------|
|           |                                                               | racy |                                         | exp. uncertainty |                 |
|           | UT angles & sides                                             |      |                                         |                  |                 |
| e Line.   | φ1 [°]                                                        | ***  |                                         | 0.4              | Belle II        |
|           | $\phi_2$ [°]                                                  | **   | <b>C</b> 1/14                           | 1.0              | Belle II        |
| d         | \$\$ [°]                                                      | ***  | СКМ                                     | 1.0              | LHCb/Belle II   |
| IM .      | $ V_{cb} $ incl.                                              | ***  |                                         | 1%               | Belle II        |
|           | $ V_{cb} $ excl.                                              | ***  |                                         | 1.5%             | Belle II        |
|           | $ V_{ub} $ incl.                                              | **   |                                         | 3%               | Belle II        |
|           | $ V_{ub} $ excl.                                              | **   |                                         | 2%               | Belle II/LHCb   |
|           | CPV                                                           |      |                                         |                  |                 |
|           | $S(B \rightarrow \phi K^0)$                                   | ***  | CDV                                     | 0.02             | Belle II        |
|           | $S(B \rightarrow \eta' K^0)$                                  | ***  | CPV                                     | 0.01             | Belle II        |
|           | $\mathcal{A}(B \rightarrow K^0 \pi^0)[10^{-2}]$               | ***  |                                         | 4                | Belle II        |
| Oneration | $\mathcal{A}(B \rightarrow K^+\pi^-)$ [10 <sup>-2</sup> ]     | ***  |                                         | 0.20             | LHCb/Belle II   |
| operation | (Semi-)leptonic                                               |      |                                         |                  |                 |
|           | $\mathcal{B}(B \rightarrow \tau \nu) [10^{-6}]$               | **   |                                         | 3%               | Belle II        |
| 1000_2008 | $\mathcal{B}(B \rightarrow \mu\nu)$ [10 <sup>-6</sup> ]       | **   |                                         | 7%               | Belle II        |
| 1999-2000 | $R(B \rightarrow D\tau\nu)$                                   | ***  | SL                                      | 3%               | Belle II        |
|           | $R(B \rightarrow D^* \tau \nu)$                               | ***  |                                         | 2%               | Belle II/LHCb   |
| 1999-2010 | Radiative & EW Penguins                                       |      |                                         |                  |                 |
| 1000 1010 | $B(B \rightarrow X_s \gamma)$                                 | **   |                                         | 4%               | Belle II        |
|           | $A_{CP}(B \rightarrow X_{s,d}\gamma) [10^{-2}]$               | ***  |                                         | 0.005            | Belle II        |
|           | $S(B \rightarrow K_S^0 \pi^0 \gamma)$                         | ***  |                                         | 0.03             | Belle II        |
| 2018-     | $S(B \rightarrow \rho \gamma)$                                | **   |                                         | 0.07             | Belle II        |
| 2010      | $\mathcal{B}(B_s \rightarrow \gamma \gamma) [10^{-6}]$        | **   |                                         | 0.3              | Belle II        |
|           | $\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$ | ***  |                                         | 15%              | Belle II        |
|           | $\mathcal{B}(B \rightarrow K \nu \overline{\nu}) [10^{-6}]$   | ***  |                                         | 20%              | Belle II        |
|           | $R(B \rightarrow K^*\ell\ell)$                                | ***  |                                         | 0.03             | Belle II/LHCb   |
| 2000      | Charm                                                         |      |                                         |                  |                 |
| 2000-     | $\mathcal{B}(D_s \rightarrow \mu\nu)$                         | ***  | _                                       | 0.9%             | Belle II        |
|           | $B(D_s \rightarrow \tau \nu)$                                 | ***  | D                                       | 2%               | Belle II        |
|           | $A_{CP}(D^0 \rightarrow K^0_S \pi^0)$ [10 <sup>-2</sup> ]     | **   |                                         | 0.03             | Belle II        |
|           | $ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$                    | ***  |                                         | 0.03             | Belle II        |
| 2000      | $\phi(D^0 \rightarrow K_S^0 \pi^+ \pi^-)$ [°]                 | ***  |                                         | 4                | Belle II        |
| 2009-     | Tau                                                           |      |                                         |                  |                 |
|           | $\tau \rightarrow \mu \gamma \ [10^{-10}]$                    | ***  | т. – т. – – – – – – – – – – – – – – – – | < 50             | Belle II        |
|           | $\tau \rightarrow e\gamma [10^{-10}]$                         | ***  |                                         | < 100            | Belle II        |
|           | $\tau \rightarrow \mu \mu \mu$ [10 <sup>-10</sup> ]           | ***  |                                         | < 3              | Belle II/LHCb   |
|           |                                                               |      |                                         |                  | 1               |

MELBOURNE

| B                   | elle II | (50 ab-1)      | 1.1 nb     | 1.6 nb       | 2018-   | $S(B \rightarrow \rho \gamma)$<br>$B(B_s \rightarrow \gamma \gamma) [10^{-6}]$                                                                                   | **                | EWP | 0.07                 |
|---------------------|---------|----------------|------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|----------------------|
|                     |         | (50 05 -)      |            | 6 nb         |         | $\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$<br>$\mathcal{B}(B \rightarrow K \nu \overline{\nu}) [10^{-6}]$<br>$R(B \rightarrow K^* \ell \ell)$ | ***<br>***<br>*** |     | 15%<br>20%<br>0.03   |
| E                   | BESIII  | ~16 fb-1       | -          | (3770 MeV)   | 2008-   | Charm<br>$\mathcal{B}(D_s \rightarrow \mu\nu)$<br>$\mathcal{B}(D_s \rightarrow \tau\nu)$<br>$A_{CD}(D^0 \rightarrow K^0_{,2}\pi^0) [10^{-2}]$                    | ***<br>***        | D   | 0.9%<br>2%<br>0.03   |
| 1                   | HCb     | 1+2+>5 fb-1    | 250-500 ub | 1200-2400 ub | 2009-   | $ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$<br>$\phi(D^0 \to K_S^0 \pi^+ \pi^-)$<br>$[\phi(D^0 \to K_S^0 \pi^+ \pi^-)]^{\circ}$                                           | ***<br>***        |     | 0.03<br>4            |
|                     |         | 1.2.010        | 200 000 μυ | 1200 2100 μ5 | 2000    | $\tau \rightarrow \mu \gamma \ [10^{-10}]$<br>$\tau \rightarrow e \gamma \ [10^{-10}]$<br>$\tau \rightarrow \mu \mu \mu \ [10^{-10}]$                            | ***<br>***<br>*** | τ   | < 50<br>< 100<br>< 3 |
| $\mathcal{B}_{M=1}$ | eeFA    | CT Hong Kong 2 | 018        | Phillip      | URQUIJO |                                                                                                                                                                  |                   | 3   |                      |









#### Measurement of Electron Cloud

Y. Suetsugu et al.

no

blowup

#### Additional permanent magnets



Threshold is much improved. more than twice of 0.2 mA/bunch/RF bucket

Mode of CBI changes and the growth rate is reduced.





#### **Machine Parameters**

|                              | Phase 2 (high bunch current) |             | Phase 2 (high current)  |             | Phase 3 (final)      |             |          |
|------------------------------|------------------------------|-------------|-------------------------|-------------|----------------------|-------------|----------|
|                              | LER                          | HER         | LER                     | HER         | LER                  | HER         | Unit     |
| I @ L <sub>peak</sub>        | 265                          | 217         | 788                     | 778         | 3600                 | 2600        | mA       |
| $\mathbf{n}_{\mathbf{b}}$    | 395                          | 5           | 1576                    |             | 2500                 |             |          |
| I/n <sub>b</sub>             | 0.670                        | 0.549       | 0.500                   | 0.494       | 1.44                 | 1.04        | mA/bunch |
| ε <sub>x</sub>               | 1.8                          | 4.6         | 1.7                     | 4.6         | 3.2                  | 4.6         | nm       |
| β <sub>x</sub> *             | 200                          | 100         | 200                     | 100         | 32                   | 25          | mm       |
| β <sub>y</sub> *             | 3                            | 3           | 3                       | 3           | 0.27                 | 0.3         | mm       |
| αc                           | 2.9 x 10-4                   | 4.5 x 10-4  | 2.9 x 10 <del>-4</del>  | 4.5 x 10-4  | 3.2 x 10-4           | 4.5 x 10-⁴  |          |
| σô                           | 7.58 x 10-4                  | 6.31 x 10-4 | 7.58 x 10-4             | 6.31 x 10-4 | 8.10 x 10-4          | 6.37 x 10-4 |          |
| $\mathbf{U}_{0}$             | 1.76                         | 2.43        | 1.76                    | 2.43        | 1.76                 | 2.43        | NeV      |
| $\mathbf{V}_{\mathbf{e}}$    | 8.4                          | 12.8        | 8.4                     | 12.8        | 9.4                  | 15.0        | M∨       |
| Vs                           | -0.0220                      | -0.0258     | -0.0220                 | -0.0258     | -0.0244              | -0.0280     |          |
| vx                           | 44.562                       | 45.542      | 44.561                  | 45.545      | 44.53                | 45.53       |          |
| vy                           | 46.617                       | 43.609      | 46.614                  | 43.612      | 46.57                | 43.57       |          |
| $\sigma_{y}^{\star}$ (X-ray) | 883                          | 652         | 1285*                   | 528         | 48                   | 62          | nm       |
| $\xi_y (\Sigma_y/\sqrt{2})$  | 0.030                        | 0.021       | 0.0244                  | 0.0141      | 0.088                | 0.081       |          |
| L                            | 2.29 x 10 <sup>33</sup>      |             | 5.55 x 10 <sup>33</sup> |             | 8 x 10 <sup>35</sup> |             | cm-2s-1  |

 $\epsilon_y$  enhancement in LER

Preliminary

11

Y.Ohnishi, eeFACT 2018, September 24, 2018

### **Milestones of BEPCII**





| Jan. 2004                    |     | Construction          | started                                                     | the state                                                                                                       |
|------------------------------|-----|-----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| May. 4, 200                  | 04  | Dismount of           | 8 linac sections                                            |                                                                                                                 |
| Dec. 1, 200                  | 4   | Linac delivere        | ed e' beams to BEPC                                         | I DETACA                                                                                                        |
| July 4, 2005                 | 5   | BEPC ring dis         | mount started                                               | July 20                                                                                                         |
| Mar. 2, 200                  | 16  | <b>BEPCII ring in</b> | stallation started                                          | Michael                                                                                                         |
| Aug. 3, 200                  | 17  | Shutdown for          | r IR-SCQ installation                                       | - tooler de Angelen op                                                                                          |
| Mar. 28, 20                  | 800 | Shutdown for          | r BESIII installation                                       | AAA                                                                                                             |
| July 19, 200                 | 08  | First hadron e        | event observed                                              | XX                                                                                                              |
| May 19, 20                   | 09  | Luminosity re         | ached 3.3×10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> | July 200                                                                                                        |
| July 17, 200                 | 09  | Pass the Nati         | onal test & check                                           | Lange Lange Lange                                                                                               |
| April 8, 201                 | 11  | Luminosity re         | eached 6.5×1032cm-2s-1                                      | Feik Lus Mintery                                                                                                |
| April 2013                   |     | Zc(3900) four         | nd & confirmed                                              | 1.001                                                                                                           |
| Nov 20.20                    | 14  | Luminosity re         | eached 8.53×10 <sup>32</sup> cm <sup>-2</sup> s             | 2.00012                                                                                                         |
|                              |     | Luminositu            | ached 10 0u1082-m-2-                                        | 1. KD3                                                                                                          |
| April 5, 201                 | 16  | 1                     | ached 10.0×10-*CM *S                                        | May 2                                                                                                           |
| 20                           | 016 | /04/05 2              | 2:29:47                                                     |                                                                                                                 |
| uminos                       | ity | 10.00                 | E32/cm^2/s                                                  | 1 A A                                                                                                           |
| GeV]                         | 1   | .8831                 | 1.8831                                                      | Top-up                                                                                                          |
| mA1                          | 8   | 49.18                 | 852.31                                                      | Nov. 2015                                                                                                       |
| fetime<br>[br]               |     | 1.53                  | 2.30                                                        |                                                                                                                 |
| nj.Rate                      |     | 0.00                  | 0.00                                                        |                                                                                                                 |
| and the second second second |     |                       |                                                             | the second se |

### Main parameters

| Energy                    | 1.0 GeV                      | 1.5 GeV               | 2.0 GeV               | 2.5 GeV               |  |  |  |
|---------------------------|------------------------------|-----------------------|-----------------------|-----------------------|--|--|--|
| Circumference             | 813.1 m                      |                       |                       |                       |  |  |  |
| Emittance hor/ver         | 8 nm/0.04 nm @ 0.5% coupling |                       |                       |                       |  |  |  |
| Damping time hor/ver/long | 50/50/25 ms 30/30/15 ms      |                       |                       |                       |  |  |  |
| Bunch length              | 21 mm                        | 21 mm 12 mm 10 mm     |                       |                       |  |  |  |
| Energy spread             | 8.7·10 <sup>-4</sup>         | 11.10-4               | 9.3·10 <sup>-4</sup>  | 7.2·10 <sup>-4</sup>  |  |  |  |
| Momentum compaction       | 8.73·10 <sup>-4</sup>        | 8.81·10 <sup>-4</sup> | 8.82·10 <sup>-4</sup> | 8.83·10 <sup>-4</sup> |  |  |  |
| Damping wiggler field     | 50 kGs                       | 50 kGs                | 35 kGs                | 10 kGs                |  |  |  |
| Synchrotron tune          | 0.007                        | 0.012                 | 0.009                 | 0.008                 |  |  |  |
| RF frequency              | 499.95 MHz                   |                       |                       |                       |  |  |  |
| Harmonic number           | 1356                         |                       |                       |                       |  |  |  |
| Particles in bunch        | 7·10 <sup>10</sup>           |                       |                       |                       |  |  |  |
| Number of bunches         | 406 (10% gap)                |                       |                       |                       |  |  |  |
| Bunch current             | 4.2 mA                       |                       |                       |                       |  |  |  |
| Total beam current        | 1.7 A                        |                       |                       |                       |  |  |  |
| Beam-beam parameter       | 0.135                        | 0.135                 | 0.121                 | 0.097                 |  |  |  |
| Luminosity                | 0.6·10 <sup>35</sup>         | 0.9·10 <sup>35</sup>  | 1.0·10 <sup>35</sup>  | 1.0·10 <sup>35</sup>  |  |  |  |

### Polarization with 5 Siberian Snakes



### **Double Aperture lens**











- Neutrino experiments
- Particle factories, such as Belle (II), and tau-charm factories

Intensity Frontier researchers use a combination of intense particle beams and highly sensitive detectors to make extremely precise measurements of particle properties, study some of the rarest particle interactions predicted by the Standard Model of particle physics, and search for new physics.

https://science.energy.gov/hep/research/