

CEPC-SppC Project

Q. Qin for the CEPC team

IHEP 16th Nov., 2018

CEPC-SppC outline

CEPC – The Physics Case

The discovery of $H(126) \Rightarrow$ golden opportunity

Higgs: it interacts with all fermions and W/Z Is it connected to DM, DE? Experiment with the H: portal to the new world? **BSM new physics searches**

CEPC directly / indirectly: probes new physics ~10s TeV scale

中國科學院為能物理研究所 Institute of High Energy Physics

Physics goals of CEPC-SppC

physics program in China after BEPCII

Precision measurement + Discovery: Complementary with each other !

Physics potential

- The nature of Higgs boson & EWSB, + flavor physics...
 - Higgs signal strengths (In kappa framework): expected accuracy roughly 1 order of magnitude better than HL-LHC
 - Absolute measurement to the Higgs boson: 2-3% level accuracy of Higgs boson width, 10⁻³ 10⁻⁵ up limit to Higgs invisible/exotic decay modes (improved by at least 2 orders of magnitude comparing to HL-LHC)
 - Improve EW measurement precision by at least 1 order of magnitude

Pheno-studies: EFT & Physics reach

The Physics reach could be largely enhanced if the EW measurements is combined with the Higgs measurements (in the EFT)

Higgs @ CEPC

S/B ~ 1:100 - 1000

Observables: Higgs mass, CP, σ(ZH), event rates (σ(ZH, vvH)*Br(H→X)), Diff. distributions Derive: Absolute Higgs width, branching ratios, couplings

CEPC-SPPC Timeline (preliminary and ideal)

- CEPC data-taking starts before the LHC program ends around 2035
- AR hin

• Possibly con-current, and complimentary to the ILC

Pre-CDR, Progress report, and CDR are available now

CEPC CDR was released in Aug. & Oct., 2018

Public release of printed CDR volumes in IHEP on 14th Nov., 2018

Luminosity vs. CM energy

Circular:

offers higher lumi. @ LE ⇒unprecedented Z,W,+H program mature technology HE synchrotron light source (?) very long term: pp upgrade path

Linear: very impressive Higgs precision best Lumi. at higher energies, or only option for VHE

e⁺e⁻ Collider Luminosities

F. Bedeschi, INFN-Pisa

circular & linear colliders are ideally complementary to each other

> 中國科學院為能物現研究所 Institute of High Energy Physics

Progress and updates - CEPC CDR

Lumi.	Higgs	W	Z	Z(2T)
×10 ³⁴	2.93	11.5	16.6	32.1

Luminosities exceed those in the pre-CDR

• Double ring baseline design (30MW/beam)

- Switchable between H and Z/W w/o hardware change (magnet switch)
- Use half SRF for Z and W
- Could be optimized for Z with 2T detector

CEPC accelerator design

Injector linac (base-line design)

Parameter	Symbol	Unit	Baseline	Design reached
e ⁻ /e ⁺ beam energy	$E_{e} - E_{e+}$	GeV	10	10
Repetition rate	f_{rep}	Hz	100	100
or /ot hunch nonulation	N_e/N_{e^+}		> 9.4×10 ⁹	1.9×10 ¹⁰ / 1.9×10 ¹⁰
e /e buildi population		nC	> 1.5	3.0
Energy spread (e ⁻ /e ⁺)	σ_{e}		< 2×10 ⁻³	1.5×10 ⁻³ / 1.6×10 ⁻³
Emittance (e^{-}/e^{+})	\mathcal{E}_r	nm∙ rad	< 120	5 / 40 ~120
Bunch length (e^{-}/e^{+})	σ_l	mm		1 / 1
e ⁻ beam energy on Target		GeV	4	4
e ⁻ bunch charge on Target		nC	10	10

中國科學院為能物招研究所 Institute of High Energy Physics

CEPC Linac Injector Damping Ring

Parameters, lattice and layout

DR V1.0	Unit	Value	
Energy	GeV	1.1	(<i>m</i>)
Circumference	М	58.5	đ
Repetition frequency	Hz	100	
Bending radius	Μ	3.6	
Dipole strength B ₀	Т	1.01	
U _o	keV	35.8	
Damping time x/y/z	Ms	12/12/6	
δ_0	%	0.049	
ε ₀	mm.mrad	302	
Nature σ_z	mm	7 (23ps)	
Extract σ_z	mm	7 (23ps)	
€ _{inj}	mm.mrad	2500	
ε _{ext x/y}	mm.mrad	716/471	
$\delta_{inj}/\delta_{ext}$	%	0.6/0.07	
Energy acceptance by RF	%	1.0	
f _{RF}	MHz	650	
V _{RF}	MV	1.8	

D(m)

• ·			Deflection	on <u> (</u>)	ection		y-clear	
Component	Length (m) Waveform angle (mrad)		aveform angle (mrad)	Field (1)	H(mm)	V(mm)	生物理研究所	
Septum	2	DC	77	0.13	63	63	Energy Physics	
Kicker	0.5	Half_sin	0.2	0.0013	63	63		

CEPC Linac Injector alternative: Plasma accelerator scheme up to 45 GeV (single stage)~120GeV (cascade)

 ϵ_{nt} (mm mrad)

Booster design

Energy (Gev)

Ζ

6000

1.3

7.51

W

10

1524

1.8

2.86

Key parameters of current CEPC ring

- 100km circumference, double ring with 2 IPs
 Matching the geometry of SPPC as much as possible
- •Adopt twin-aperture quads and dipoles in the ARC
- •Detector solenoid 3.0T with length of 7.6m while anti-solenoid 7.2T
- •L*=2.2m, θc=33mrad, βx*=0.36m, βy*=1.5mm
- •Maximum gradient of quad 136T/m (3.8T in coil)
- •Tapering of magnets along the ring
- •Two cell & 650MHz RF cavity
- •Two dedicated surveys in the RF region for Higgs and Z modes
- •Maximum e+ beam power 30MW & e- 30MW
- •Crab-waist scheme with local X/Y chromaticity correction
- •Common lattice for all energies.

Parameters of CEPC double ring

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	45.5	;	
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73 0.34 0.036				
Crossing angle at IP (mrad)		16.5×2			
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+	-10%gap)	
Beam current (mA)	17.4	87.9	461.0)	
Synchrotron radiation power /beam (MW)	30	30	16.5	;	
Bending radius (km)		10.7			
Momentum compact (10 ⁻⁵)	1.11				
β function at IP $\beta_x * / \beta_v *$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x / \sigma_v (\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10)	
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)			
Natural bunch length σ_{z} (mm)	2.72	2.98	2.42		
Bunch length σ_{z} (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23	i	
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.1	0.05	0.023	3	
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

RF & Arc regions

Accelerator physics study

Detector & physics

Baseline detector: pixel vertex detector, silicon inner tracker, a TPC, Si external tracker, ECAL, HCAL, 3 T B-field, embedded muondetector

Alternative detector

Full silicon tracker +baseline detector 中國科學院為能物招研究所 Institute of High Energy Physics

CEPC Detector: more compact & updated for CDR

CDR CEPC detector: Double ring geometry & MDI design implemented HCAL reduced to 40 layers (from 48 in preCDR)

No visible impact on physics performance

From CDR to TDR

- Refine all sub-systems of damping ring, booster & collider rings
 - All connecting transfer lines matching the collider accelerator chain requirements
 - Detector bakgroud reduction, beam-beam for long lifetime
 - MDI optimization and SC magnets' design
 - Magnets' studies with H, W, and Z all modes
- Upgrade possibility studies
- Key technologies
 - High current positron source
 - High Q superconducting RF cavity and high power coupler
 - Max. operation Q = 2x10¹⁰@2K
 - Max. power of high power coupler = 300kW
 - High efficiency klystron
 - ~80% as the goal for 650MHz klystron
 - Large scale cryogenics system
 - Low field dipole magnet (booster)
 - Electro-static separator for deflect two beams

CEPC SRF system layout

RF Section A

- Two Collider Ring RF Stations CRFA1 (84 cavities in 14 cryomodules) and CRFA2 (84 cavities in 14 cryomodules) (blue)
- One Booster RF Station BRFA (48 cavities in 6 cryomodules) (orange)
- Straight section length between CRFA1 and CRFA2: 368.6 m

	н	W	Z	
Collider Ring	650 M	MHz 2-cell c	avity	
Lumi. / IP (10 ³⁴ cm ⁻² s ⁻¹)	2	4	1	
RF voltage (GV)	2.14	0.465	0.053	
Beam current (mA)	17.7 x 2	90.2	83.7	
Cavity number	336	108 x 2	12 x 2	
SR power (MW)	30	30	2.9	
2 K cavity wall loss (kW)	6.4	1	0.1	
Booster Ring (extraction)	1.3 GHz 9-cell cavity			
RF voltage (GV)	1.83	0.7	0.36	
Beam current (mA)	0.53	0.53	0.51	
Cavity number	96	64	32	
RF input power (MW) avg.	0.1	0.02	0.01	
2 K wall loss (kW) avg.	0.2	0.1	0.03	

- Same cavities for H, W, Z and one-time full installation
- Common collider cavities for H, independent for W & Z

CEPC SRF cavity & cryo-module

- Vertical test result: Q₀=5.1E10@26MV /m, reaching the CEPC target (Q₀=4.0E10@22.0 MV/m)
- After N-doping, Q₀ increased obviously at low field for both 650MHz 1-cell cavities.

The civil construction of the EP facility is on going, and the commissioning will be at the end of 2018.

New SRF infrastructure at Huairou District, Beijing

 Platform of Advanced Photon Source tech. R&D (PAPS), supported by Beijing local government and mainly constructed for the High Energy Photon Source (HEPS), could be used for SRF development

High Efficiency Klystron Development

Established "High efficiency klystron collaboration consortium", including IHEP & IE(Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

- 2016 2018: Design conventional & high efficiency klystron
- 2017 2018: Fabricate conventional klystron & test
- 2018 2019: Fabricate 1st high efficiency klystron & test
- 2019 2020: Fabricate 2nd high efficiency klystron & test
- 2020 2021: Fabricate 3rd high efficiency klystron & test

 \Rightarrow 73%/68%/65% efficiencies for 1D/2D/3D

Parameters	Conventional efficiency	High efficiency
Centre frequency (MHz)	650+/-0.5	650+/-0.5
Output power (kW)	800	800
Beam voltage (kV)	80	-
Beam current (A)	16	-
Efficiency (%)	~ 65	> 80

Mechanical design of conventional klystron

R&D on the low field dipole magnet of booster

- To verify the magnet design and field simulation, a 1m long prototype dipole magnet (booster) was developed and measured
 - Supported by IHEP workshop

Candidate sites of CEPC

- 1. QingHuangDao, Hebei (completed preCDR)
- Huangling, Shaanxi (2017.1 signed contract to exp.)
- ShenShan, Guangdong, (completed in August, 2016)
- 4. ...

Institute of High Energy Physics

研究所

CEPC Civil Engineering (Qinhuangdao: 100km, CDR Example)

CEPC is conducting country-wide site visits and study. Local government agencies are very receptive and supportive to CEPC. CDR study is based on site 1 (Qinhuangdao).

CEPC power estimation

	Custom for Ulars	Location and electrical demand(MW)						T I
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

266MW

		L	Location and electrical demand(MW)					
	System for Z	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	57.1	0.15	5.8				63.05
2	Cryogenic System	2.91	0.31			1.72		4.94
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	19.95	2.22	1.38	0.55	1.2		25.3
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772

149MW

中國科學院為能物昭為完施 Institute of High Energy Physics

International collaboration

...

Strengthen cooperation with CERN
 Joined CALICE collab., ILD TPC collab., RD collab.s

- First international workshop on CEPC in Europe Rome 2017
- Next one will in Oxford, UK, April 15-17, 2019

Fourth CEPC IAC meeting (Nov. 14-16, 2018) to focus on international collaboration and other aspects

> 中國科學院為能物現研究所 Institute of High Energy Physics

CEPC funding

HEP seed money

11 M RMB/3 years (2015-2017)

R&D	Funding	- NSFC

Increasing support for CEPC D+RDby NSFC 5 projects (2015); 7 projects(2016)

CEPC相关基金名称(2015-2016)	基金类型	负责人	承担单位
高精度气体径迹探测器及激光校正的研究 (2015)	重点基金	李玉兰/ 陈元柏	清华大学/ Tsinghu 高能物理研究所 IHEP
成像型电磁量能器关键技术研究(2016)	重点基金	刘树彬	中国科技大学 USTC
CEPC局部双环对撞区挡板系统设计及螺线管场补偿 (2016)	面上基金	白莎	高能物理研究所
用于顶点探测器的高分辨、低功耗SOI像素芯片的 若干关键问题的研究(2015)	面上基金	卢云鹏	高能物理研究所
基于粒子流算法的电磁量能器性能研究 (2016)	面上基金	王志刚	高能物理研究所
基于THGEM探测器的数字量能器的研究(2015)	面上基金	俞伯祥	高能物理研究所
高粒度量能器上的通用粒子流算法开发(2016)	面上基金	阮曼奇	高能物理研究所
正离子反馈连续抑制型气体探测器的实验研究 (2016)	面上基金	祁辉荣	高能物理研究所
CEPC对撞区最终聚焦系统的设计研究(2015)	青年基金	王逗	高能物理研究所
利用耗尽型CPS提高顶点探测器空间分辨精度的研究 (2016)	青年基金	周扬	高能物理研究所
关于CEPC动力学孔径研究(2016)	青年基金	王毅伟	高能物理研究所

国家重点研发计划 项目预申报书

Ministry of Science and Technology Requested 45M RMB; 36M RMB approved

项目名称:	高能环形正负电子对撞机相关的物理和关键技 术预研究
所属专项:	
指南方向:	新一代粒子加速器和探测器关键技术和方法的 预先研究
推荐单位:	教育部
申报单位:(公章)	清华大学
项目负责人:	高原宁

~60M RMB CAS-Beijing fund, talent program

~500M RMB Beijing fund (light source)

year 2017 funding request (45M) to MOST and other agencies under preparation

funding needs for carrying out CEPC design and R&D should be fully met by end of 2018

学院高能物路狮完所 te of High Energy Physics

CEPC - path to realization

Chinese Government: "actively initiating major-international science project..." 国发〔2018〕5号(2018.3.14) <u>http://www.gov.cn/zhengce/content/2018-03/28/content_5278056.htm</u>

- Focuses on "frontier science, large-fundamental science, global focus, international collaboration, ..."
- By year 2020, 3-5 projects will be chosen to go into "preparatory stage", among which 1-2 projects will be selected. More projects will be selected in later years.
- The task of selecting the projects, and develop them further falls on the Ministry of Science and Technology (MOST)
- MOST committees formed, are writing the guidelines
- This is a likely path to realize CEPC. We are paying close attention to this opportunity

From CEPC to SppC

- SppC Baseline design
 - Tunnel circumference: 100 km
 - Dipole magnet field: 12 T, using full iron-based HTS technology
 - Center of Mass energy: >70 TeV
 - Injector chain: 2.1 TeV
 - Relatively lower luminosity for the first phase, higher for the second phase
- Energy upgrading phase
 - Dipole magnet field: 20 -24T, full iron-based HTS technology
 - Center of Mass energy: >125 TeV
 - Injector chain: 4.2 TeV (e.g., adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)
- Development of high-field superconducting magnet technology
 - Starting to develop required HTS magnet technology; before applicable ironbased HTS wire are available, models by YBCO and LTS wires can be used for specific studies (magnet structure, coil winding, stress, quench protection method etc.)

Compatibility between CEPC and SPPC

- CEPC first to be built, with potential to add SPPC later
- Allow ep collision in the future, three machines in one tunnel: e booster, ee double-ring collider, pp double-ring collider (keeping ee detectors together with SPPC in doubt)
- Several rounds of interactions between CEPC and SPPC design teams
- Layout: 8 long straights and arcs, LHC-like DS lattice, lengths for LSSs

Technical challenges and R&D requirements -High field SC magnets

- Following the new SPPC design scope
 - Phase I: 12 T, all-HTS (iron-based conductors)
 - Phase II: 20-24 T, all-HTS
- New magnet design for 12-T dipoles
- R&D effort in 2016-2018
 - Cables, infrastructure
 - Development of a 12-T Nb3Sn-based twin-aperture magnets (alone, with NbTi, with HTS)
- Collaboration
 - Domestic collaboration frame on HTS superconductors (material, industrial and applications) formed in October 2016
 - CERN-IHEP collaboration on HiLumi LHC magnets

中國科學院為能物現研究所 Institute of High Energy Physics

Design of 12-T Fe-based Dipole Magnet

R&D of High Field Dipole Magnets

Fabrication of the 1st model dipole magnet (NbTi+Nb₃Sn)

Institute of High Energy Physics

Domestic Collaboration on HTS

"Applied High Temperature Superconductor Collaboration (AHTSC)" formed in Oct. 2016. Including 18 institutions and companies in China. Regular meeting every 3 months.

> Goal :

- a) 1) To increase the J_c of iron-based superconductor (IBS) by 10 times, reduce the cost to 20
 Rmb/kAm @ 12T & 4.2K, and realize the industrialization of the conductor;
- b) 2) To reduce the cost of ReBCO and Bi-2212 conductors to 20 Rmb/kAm @ 12T & 4.2K;
- c) 3) Realization and Industrialization of IBS magnets and SRF cavities.
- Working groups: 1) Fundamental sciences study; 2) IBS conductor R&D; 3) ReBCO conductor R&D; 4) Bi-2212 conductor R&D; 5) Performance evaluation; 6) Magnet and SRF technology.

CERN

CERN & China Collaboration

3.0

4.0

China will provide 12 units CCT corrector magnets for HL-LHC before 2022 A 0.5m model and 2.2m prototype to be fabricated and tested by June 2019

Fabrication and test of the 1st coil for the 0.5m model magnet @ Xi'an

- 1. The CEPC CDR was finished and just public released at IHEP, China, with the design of 100-km doublering;
- 2. R&D for CEPC/SppC got the support of funding but need more, especially human resources;
- 3. Technological systems, both of CEPC and mainly HTS magnet of SppC, are gradually developed, with the support from industry in China;
- 4. Both CEPC & SppC, a lot of work ahead, and more budget and collaborations on R&D are expected.

Thank you for your attentions!