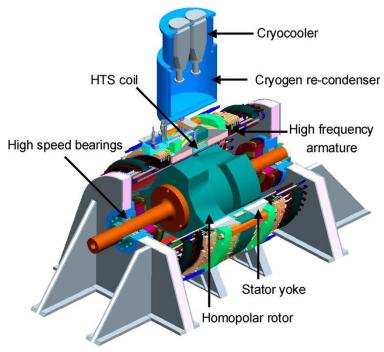


Homopolar superconducting AC machines, with HTS dynamo driven field coils, for aerospace applications

Swarn Kalsi¹, R. A. Badcock², K. Hamilton² and J.G. Storey²

¹Kalsi Green Power Systems, LLC, Princeton, NJ 08540

² Robinson Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand



M2Or4A-02 [Invited]

Homopolar HTS AC Machines

OUTLINE

- Aircraft motor specifications
- Preliminary design
- Field winding concept
- Dynamo excitation concept
- Preliminary design details
- Outlook

Credit: Sivasubramaniam K, Zhang T, Lokhandwalla M, Laskaris E T, Bray J W, Gerstler B, Shah M R and Alexander J P 2009 *Development of a high speed HTS generator for airborne applications* IEEE Transactions on Applied Superconductivity **19** 1656–61

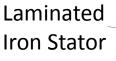
Reliable means for transferring coolant and excitation power to the HTS field winding are must

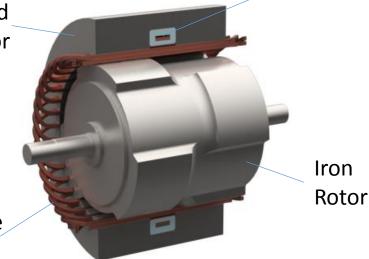
Aircraft Motor Specifications

Parameter	Value
Motor Rating	2 MW
Motor Speed	25,000 RPM
Line Voltage	~1000 V
Rated power factor	0.9 lag
Rotor diameter	< 500 mm
Axial length	< 800 mm
Field excitation winding	REBCO
Operating temperature	50 K

https://www.wired.com/2013/07/eads-ethrust-hybrid-airliner/

High speed, low mass motor for hybrid-electric aircraft




M2Or4A-02 [Invited]

HTS Field Coil

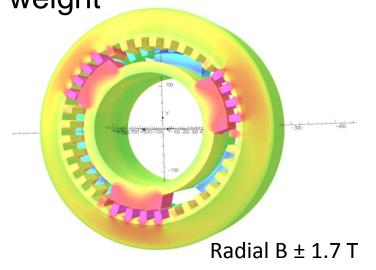
2 MW 25000 RPM Homopolar Motor

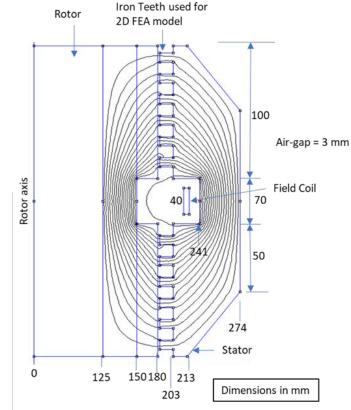
- Synchronous machine with 6-poles
- Field coil material rare-earth-barium-copper oxide (REBCO) cryocooled to 50 K, 364 A
- Stator material 10JNEX900 Super Core
- Rotor material Carpenter Steel's Aermet 310 magnetic steel
- Litz copper wire 3-phase liquid-cooled armature winding, 6 A/mm² strands
- Magnetic bearings and partial-vacuum motor housing to reduce drag
- Field winding excited with a brushless dynamo

Armature Windings

Double-Layer Armature

Superconducting field coil enables megawatt ratings



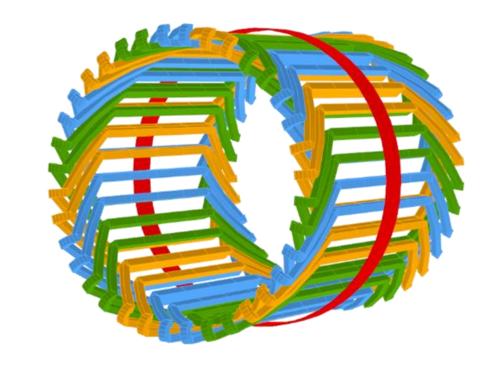


Finite-Element Method Analysis

- Design refined using static 2D FEMM and motional 3D Opera
- Axial length 450 mm, diameter 548 mm
- Chamfered stator to minimize weight
- Active pole length 100 mm
- Power rating 2020 kVA
- Machine mass 381 kg
- Power density 5.4 kW/kg

Slots shown above are fictitious – they account for available teeth cross-section to carry magnetic flux

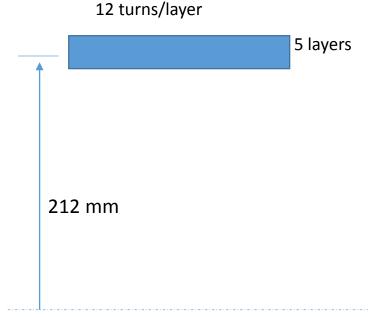
Efficiency at full load 99.1 %



Field I	Harmonics	at 25,000	RPM
---------	-----------	-----------	-----

Harmonic	Field(G)	Fraction of
		fundamental
1	3512	1
3	71.9	0.02
5	162.8	0.046
7	78.4	0.022
9	118.6	0.034
11	39.3	0.011
13	40.6	0.012
15	33.4	0.009

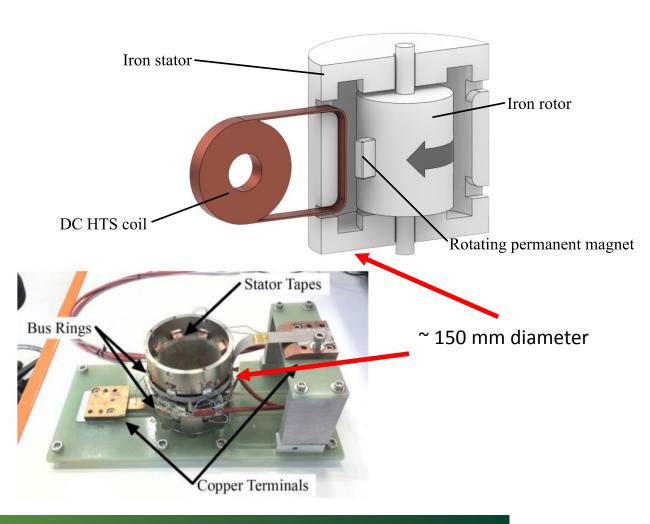
Most harmonics are small and are not expected to be problematic



HTS Field Winding Design

- Field coil mean diameter = 424 mm
- Field coil cross-section = 40 mm x 8 mm
- Number of turns = 60
- Conductor type REBCO 3mm wide
- Field coil inductance 1.19 mH
- Field current, 188 A (no-load) and 364 A (full-load)
- Field winding excited with a brushless flux-pump dynamo
- Dynamo regulates the field current

Simple circular coil construction



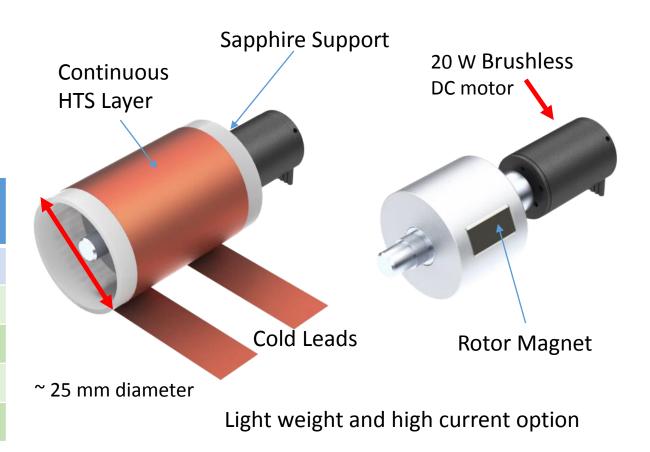
HTS Dynamo Concept

 Field coils excited wirelessly for minimizing thermal conduction into cold environment

 Brushless exciter (HTS Dynamo) shown here can supply currents greater than 1 kA

Hamilton et al., IEEE Trans. Appl. Supercond. 29, 5200705 (2019)

This dynamo concept has been successfully built and demonstrated by RRI-VUW



HTS Dynamo Concept

 "Barrel" HTS dynamo concept to be integrated with the field coil

Performance comparison	Current Leads	Dynamo
Thermal conduction through cryostat, W	30	30
Thermal conduction through exciter, W	36	4
Total thermal load, W	66	34
Power input to refrigerator, kW	1.94	1.05
Weight of refrigerator, kg	4	2

50% reduction in thermal load and refrigerator mass

Preliminary Design Summary (with HTS Dynamo)

Parameter	Value
Power Rating, kVA	2020
Output power at full-load, MW	2000
Line voltage, V-rms	1292
Phase current, A-rms	922
Overall axial length, m	0.45
Overall diameter, m	0.56
Mass of the machine alone, kg	381
Mass of cryo-cooling system, kg	3
Total mass, kg	381
Efficiency at full-load, %	99.1
Cryocooler load, W	38*
Other parameters of interest	
Rated speed, RPM	25000
Number of poles	6
Frequency, Hz	833

Parameter	Value
Field winding details	
Number of turns	60
Field winding critical current- no-load, A	621
Field winding critical current – rated-load, A	560
Field winding current at rated load, A	364
HTS wire width, mm	3
HTS wire length, m	84
Operating temperature, K	50
Stator winding details	
Active length under each pole, mm	100
Number of armature turns/ph	16
Number of armature circuits	6
Number of coils in armature	36
Number of turns/coil	8
Field coil inductance, mH	1.19

Dawawatau	Value
Parameter	value
Machine component weight summary	
- Shaft, kg	5
- Rotor yoke, kg	76
- Poles, kg	21
- Stator case, kg	50
- Cooling system, kg	2*
Total machine mass, kg	380
Total system mass, kg	380
Torque density, N*m/kg	2.06
Power density, kW/kg	5.4
^a Calculated using Ref: Ray Radebaugh, "Ray Radebaugh" Cryocoolers for Aircraft Superconducting Generators and Motors", NIST, AIP Conference Proceedings 1434. 171 (2012): doi: 10.1063/1.4706918	

^{*} Calculated using Ref: Ray Radebaugh, "Ray Radebaugh "Cryocoolers for Aircraft Superconducting Generators and Motors", NIST, AIP Conference Proceedings 1434. 171 (2012): doi: 10.1063/1.4706918

Outlook

- Homopolar concept presented here represents a reasonable option for aerospace applications in near term
- Most sub-systems of this type of machines have been built and tested
- Motors and generators could be built by integrating suitably sized components
- Other options are being pursued to achieve higher power densities and efficiencies

Questions

