

Process control system evolution for the LHC Cold Compressors at CERN

Victor Lefebvre

B.Bradu, L.Delprat, E.Duret, G.Ferlin, B.Ivens, M.Pezzetti

Outline

- 1. LHC Cold Compressors
- 2. Process control strategies
- 3. Upgrade motivations
- 4. Improvements done
- 5. Results

Overview

- Eight 2.4 kW @ 1.8 K Refrigeration Units
- Two different designs from two suppliers
- Cold compressors in cavern coupled to warm volumetric screw compressors at surface

Cold Compressors Basics

Basics equations:

•
$$Nr = \left(\frac{N}{\sqrt{T_{in}}}\right) \cdot \left(\frac{\sqrt{Td_{in}}}{Nd}\right)$$

•
$$Mr = \left(\text{mi.} \frac{\sqrt{T_{in}}}{P_{in}} \right) \cdot \left(\frac{1}{\text{mid}} \cdot \frac{Pd_{in}}{\sqrt{Td_{in}}} \right)$$

•
$$PR = \left(\frac{P_{out}}{P_{in}}\right)$$

with:

- $N \rightarrow \text{Speed}$
- mi → Mass flow
- $r \rightarrow \text{Reduced values}$
- $T_{in} \rightarrow \text{Inlet Temperature}$
- $P_{in}/Pout \rightarrow Inlet/Outlet Pressure$
- $d \rightarrow$ corresponding design values

Pressure field:

Nr needs to be between Surge and Choke lines (depending on Mr and PR) to allow for pumping

Process Control Challenges

Process Control Strategies (1/2)

CERN made control (type A unit):

Principle:

- PID controller over PR for each CC
- CC₁ controls inlet pressure
- CC₃ starts first, then CC₂ then CC₁
- \rightarrow CC_{3/2} provide large *PR*
- → CC₁ provides precise pressure
- → Sequential start minimizes flow fluctuations between CCs

Process Control Strategies (2/2)

Two-mode strategy (type B unit):

Principle:

- One mode for high pressure, one for low pressure
- Use of reduced values

High pressure mode:

Derivated from CERN made strategy (type A):

- shifted start of CCs
- no direct PR control

Low pressure mode:

Interpolation based:

- inputs: pressure and flow
- outputs: Nr of each of the four CCs

Motivations for the upgrade

Context:

- Process control delivered more than 13 years ago
- End of electrical components life cycle (updates initiated in 2015)
- Logic running on dedicated Programmable Logic Controllers
- Old PLCs replacement campaign for Long Shutdown 2 (2019-2020) of LHC

Existing problems:

- Complicated diagnostic
 - → Logic is a "black box", not CERN standards
 - → Hardware redundancies
- Numerous manual operations
 - → Impact on reconnection time
 - → Human factor influence

Deployment process:

- Development of a first version for each unit type
- Tests on site and/or on simulation
- Deployment on all units during LHC LS2

Hardware Changes

Hardware simplification:

- Standalone PLC removed (logic inclusion into existing 1.8 K unit PLC)
- Remove of most of the hardware interlocks (redundant with PLC interlocks)
 - → Ultimate machine protection (AMB levitation signal) only on hardware
 - → PLC interlock goes to VFD that cut input power of the motor

Objectives:

- Maximal availability
- Minimal diagnostic time
- Minimal maintenance

Warm Gas Inlet Control

Context:

- Warm gas (@ 300 K) control valve
- Inlet temperature control
- Need to lower the temperature to pump down
- Temperature set-point calculated depending on total PR

Problems:

- 1. Vicious circle in case of pressure fluctuations
- 2. Blocked situations, impossible to pump-down
- → Valve operated manually most of the time

Solution:

Calculate set-point depending on desired *PR* (P_{out} / P_{in} set-point)

- 1. P_{in} set-point not subject to fluctuations
- 2. P_{in} set-point is ramped down so no frozen situation

Surge Detection

Context:

- Surge occurs when Nr is too high in Mr/PR field •
- Brutal loss of pumping capacity
- Machine protection issue
 - → strong constraints on magnetic bearings
- Previously detected using theoretical Nr values
 - → can induce trips even if no effect is detected
 - → can continue process when effects are visible

Case study:

- Study of consequences of previous surge line crossing
- Pressure and temperature simultaneously rise/fall brutally

Solution:

- Use pressure and temperature derivatives on each CC
- If both values reach their dedicated threshold (5 mbar/s, resp. 2 K/s) within the same timeframe, stop is triggered
 - > validated on simulation and on site

Automatic "Increment" Calculation

Problems:

- 1. Increment value not meaningful to operators
- 2. CC₁ starts too early causing trips
 - → Has to be operated manually

Solutions:

- Calculate total PR depending on increment value
- Knowing actual flow and desired input pressure, calculate corresponding increment value
 - → Ramped desired input pressure value
 - → Automatic pump down to this value
- Correction of CC₁ curve to start later
 - → Automatic operation

CCs curves

Results

Type B:

- Heavily tested on site,
- Normal operation of LHC for more than a month without interruption

Type A:

- First tests on site
- Final tests on simulation (control system copy + EcosimPro dynamic model)

→ Satisfying results on both unit types, models validated

Global achievements:

- Easier diagnostic (better knowledge of the process, CERN standards)
- Reconnection time stability (process automatization)
- Reliability improvement (process automatization, less hardware breakpoints)
- Operation standardization and simplification

Perspectives:

- Deployment during Long Shutdown 2
- Use during LHC Run 3
- Great asset for future HL-LHC cold compressors

