

Investigation of Cryogenic Mixed-Refrigerant Cooled Current Leads in Combination with Peltier-Elements

E. Shabagin, K. Raczka, S. Grohmann

CEC-ICM 2019

C1Or2B-07 – Superconducting RF Systems, Power Cables, and Leads I

Institute for Technical Physics (ITEP)

Motivation

Efficient transport of electrical current from room-temperature to a superconducting application at the cryogenic temperature

Current Lead Technologies (Overview)

Current Lead Technologies (Overview)

	Open cycle	Closed cycle			
	Evaporation of LN ₂	1 Stage Cryocooler	Multistage		
Principle	Gas-cooled (forced flow / self-sufficient)	Conduction cooled	Conduction cooled		
Cooling power	Any @ 80K	Max~ 600 W @80K	Limited		
Ampacity	Any	42,5 W/kA ► 14 kA (1 Cryocooler)	Limited (20 kA possible [1])		
Operation supplies	Electricity LN ₂	Electricity Cooling water	Electricity Cooling water		
Disadvantage	LN ₂ supply	Cooling power limitation	Several refrigeration machines required		

[1] Schreiner F, Gutheil B, Noe M et al. 2017 IEEE Trans. Appl. Supercond. 27 4802405; doi:10.1109/TASC.2017.2655108.

New Solution for HTS Power Application

Cryogenic Mixed Refrigerant Cycles (CMRCs) + Current Lead

Prototype of a 10 kA continuous cooled current lead

Thermoelectric effect (Peltier effect)

New Solution for HTS Power Application

Concept of a CMRC-CL with Peltier elements (Bi₂Te₃)

Thermal & electric model design

Temperature profile calculation

$$\frac{\partial}{\partial x} \cdot \left(\lambda_{i}(T) \cdot A \cdot \frac{\partial T_{i}}{\partial x} \right) + I^{2} \cdot \frac{\rho_{i}(T)}{A_{i}} - \underbrace{\left(k_{LP} \right)}_{LP} \cdot U \cdot (T - \underbrace{\left(T_{LP} \right)}_{LP}) \right]_{i=2} = 0 , \qquad i = 1,2,3$$

Heat conduction Joule heating Forced convection

[2] Gomse D, Kochenburger T M, and Grohmann S 2018 *Journal of Heat Transfer* **140** 051801; doi: 10.1115/1.4038852

Thermal & electric model design

[2] Gomse D, Kochenburger T M, and Grohmann S 2018 *Journal of Heat Transfer* **140** 051801; doi: 10.1115/1.4038852

Thermal & electric model design

Temperature Profiles

Investigation of energy consumption

PE-CMRC-CL: 35.9 mole % N₂, 31.9 % CH₄, 18.2 % C₂H₆, 14 % C₃H₈

CMRC-CL: 30 mole % N₂, 20 % CH₄, 20 % C₂H₆, 30 % C₃H₈

I = 10 kA	P_{el}	Q ₀ @80K	P _{CMRC}	P_{GM}	P_{total}	P _{total}		
	(W)	(W)	(W)	(W)	(W)	P _{CCCL}		
CCCL	425	425	0	11500	<u>11925</u>	100 %		
51 % reduction								
CMRC-CL	525	310	740	7500	8765	<u>73.5 %</u>		
PE-CMRC-CL	704	204	854+500	7500	9558	80.2 %		

 $P_{\rm CMRC}$ = compressor rating

■ **GM 1**: 600 W @ 80 K **► 11.5 kW**

■ GM 2: 320 W @ 80 K ► 7.5 kW

Source: <u>www.cryomech.com</u>

12

Investigation of energy consumption

PE-CMRC-CL: 35.9 mole % N₂, 31.9 % CH₄, 18.2 % C₂H₆, 14 % C₃H₈

CMRC-CL: 30 mole % N₂, 20 % CH₄, 20 % C₂H₆, 30 % C₃H₈

I = 10 kA	P_{el}	Q ₀ @80K	P _{CMRC}	P_{GM}	P_{total}	P _{total}	
	(W)	(W)	(W)	(W)	(W)	P _{CCCL}	
CCCL	425	425	0	11500	<u>11925</u>	100 %	
51 % reduction							
CMRC-CL	525	310	740	7500		<u>73.5 %</u>	
PE-CMRC-CL	704	<u>204</u>	854+500	7500		80.2 %	

 $P_{\rm CMRC}$ = compressor rating

13

Strong motivation for a second CMRC stage down to 77.4 K!

Source: www.crvomech.com

Combination of Peltier elements and a CMRC-CL is possible

- Numeric coupling of electric model and thermal modeling framework for integrated optimization
 - Heat exchanger = current lead
- Reduction of thermal load at cold end by 51 % compared to conventional conduction-cooled current leads
- Still high energy consumption for a current lead
 - > GM Cryocooler

Aim:

Development of a second CMRC stage down to 77.4 K

Thank you for your attention!