

Thermal Analysis and Cryogenics of the Baby-IAXO detector magnet

Helder F P Silva, Alexey Dudarev, Nikolay Bykovskiy, Patricia Sousa Borges & Herman ten Kate

Content:

- 1. IAXO
- 2. Baby-IAXO Magnet
- 3. Cold Mass Supports Mechanics and Heat Load
- 4. Radiation Heat Load
- 5. Current Leads Heat Load
- 6. Cryocoolers based cooling
- 7. Conclusion

1. IAXO – A new International AXion Observatory

- Axions and axion like particles (ALP's) may be converted into X-ray photons in the presence of a transverse magnetic field.
- The sun is hypothesized to be a source of these particles.
- The Magnet Figure of Merit of an axion helioscope yields:

$$f_M \propto L^2 \int B^2(x,y) dx dy \rightarrow L^2 B^2 A$$

• Magnet design goal: maximize f_M while keeping cost down.

IAXO Full-size – Conceptual design

- Magnet Figure of Merit requested at least 300 times the present CAST magnet.
- Superconducting toroid with 8 racetrack coils, 2 double pancake coils per coil:
 - Well-know technique
 - Flat windings, easy tooling
 - Risk-minimizing design.
- 8 detector bores followed by optics and X-ray detector
- Characteristics:
 - 20-m long magnet
 - 8 detector bore tubes Ø 600 mm
 - Average magnetic field 2.5 T
- Cost: some 60 M€
- Conceptual design has been finalized.

2. Baby-IAXO — A down-scaled IAXO demonstrator

- A stepping stone towards the IAXO experiment.
- A fully functional demonstrator and development system, 2 bores, (only) 10 m long.
- Experiment requirements:

Sun tracking capabilities:

360° rotation

± 25° inclination.

- Anticipated site is South Hall at DESY, no cryogenics infrastructure, decided for a <u>dry</u> <u>cooling of magnet using cryocoolers.</u>
- Figure of merit set to 10 times the CAST magnet.
- Simple and robust design compliant with:
 - Construction timescale of 3 to 4 years
 - Low budget < 10 M for entire system.

Baby-IAXO – Detector magnet parameters

Racetrack coil width [mm]	595
Racetrack coil height [mm]	82
Coil length [m]	10
Gap between poles [mm]	1000
Gap between coils [mm]	800
Magnet stored energy [MJ]	50
Self-inductance [H]	1.0
Peak magnetic field [T]	3.2
Windings current density [A/mm²]	56
Nominal operating current [kA]	9.8
MFOM 3D [T ² m ⁴]	232

Design shows two racetrack coils in quadrupole layout, allowing for 2 free bore tubes of Ø 700 mm.

3. Baby-IAXO Cold mass suspension system – Forces

- Minimize conduction through the supports
 - Use slender supports in tension (rods)
 - Find material with the best strength to thermal conductivity ratio
- During transport cold mass locked vertically and transversely.
- Loads to be supported:
 - Weight of the cold mass
 - Magnetic force pulling cold mass towards the supporting system
 - Acceleration of lifting and transport.

	Fx [kN]	Fy [kN]	Fz [kN]	My [kN.m]
Tilted -25° ²	-18.6	0	-239	71.6
Horizontal ²	-5.5	0	-249	87.7
Tilted 25° ²	-11.7	0	-271	160
Transport ¹	±170	0^{1}	-210 ¹	0

¹ Locked during transport

² When operated at 12kA

Baby-IAXO Cold mass supports - Comparison of materials

What is the best material for the rods?

 $\frac{\sigma_a}{q}$ \longrightarrow higher values mean lower heat load for the same material strength

 $\frac{E}{q}$ \longrightarrow higher values mean lower heat load for the same material stiffness

$$q = \int_{4.5K}^{50K} \lambda(T) \cdot dT$$

Material	Young modulus (E) [GPa]	Thermal contraction [%] 1	Allowable stress (σ_a) [MPa] ⁴	$q \ [W/_m]$	$\frac{\sigma_a}{q} \left[\frac{MPa \cdot m}{W} \right]$	$\frac{E}{q} \left[\frac{MPa \cdot m}{W} \right]$
Inconel	200	0.19	710	154	4.5	1.3
Ti6Al4V	114	0.14	465	58	<u>8.0</u>	<u>2.0</u>
Permaglas	20	0.15	100	8.0	13	2.5
GFRP uniaxial	34	0.07	135 ³	8.0	17	4.3
CFRP uniaxial	134	0.03	550 ³	7.2 ²	75 ²	1.8

¹ Thermalized at 50K at 40% of length

The initial calculation where done using Ti6Al4V given the complexity / limitations of using composite materials.

² 4 times higher than permaglass between 300K - 50K

³ Weak point is the bonding between the fibers and the metal interface

⁴ Safety factor of 3 for the composite materials

Baby-IAXO Cold mass supports – System of rods

- Self centering support structure
- Rods used only in tension
- No pre-stressing of rods during installation
- Pre-stress occurs during cool down
- Rods marked in red are limited by displacement (max^{E}/q)
- Rods marked in green are limited by their strength (max^{σ_a}/q)
- Given the low heat load, there is no need to use composite materials

Condition	Material	Length [m]	Diameter [mm]	Number of rods	Heat load @50K [W]	Heat load @4.5K [mW]
Vertical rods	Ti6Al4V	1.8	16	8	1.9	90
Longitudinal	Ti6Al4V	1.6	16	4	1.1	50
Transverse	Ti6Al4V	2.0	16	4	1.3	40
Total					4.3	180
						0

4. Baby-IAXO Cryogenic heat load — Radiation

	MLI layers	q_{MLI} [mW/m²]	Area [m²]		Q_{limit} [W] (20% margin)
Thermal shield @50K	30	1200	~135	<u>165</u>	<u>200</u>
Cold mass @4.5K	1	25 - 50	~130	<u>4.9</u>	<u>5.9</u>

- Easier installation of MLI
- No limitation in packing factor, except between bore tubes and cold mass
- Floating thermal shield around cold mass (not on bore tubes)
 - 25% heat load reduction

Direct line of sight between bores and outer shield

View factor < 1

Cooled using Cryocoolers paired with a He gas circulator

5. Baby-IAXO Heat load – 10 kA HTS Current Leads

• Heat load for two Cu, RRR10, conduction cooled current leads at 60 K:

$$Q = 2 \cdot I \cdot \sqrt{2 \int_{60K}^{300K} \lambda(T) \cdot \rho(T) \cdot dT} = 840 W$$

- For simplicity and lower thermal shield temperature:
 - Decoupled copper current lead and thermal shield
 - 2 Al 600 cryocoolers
 - Total cooling power @70 K is 1kW
 - 20% margin for covering losses
- When in overcurrent (12kA), liquid nitrogen will be used in combination with the cryocoolers to keep the temperature below 78 K.
- Expected heat load from HTS part < 1 W

6. Baby-IAXO Cryogenic Concept - Cool Down

- Two independent He gas circulators:
 - Thermal shield and supports' intercepts cooled by 4 PT420
 1st stage
 - Cold mass cooled down to
 50 K by 2 AL600 cryocoolers
 - Decoupling of cold mass and AL600 cryocoolers by purging of the He gas circuit
- LN2 heat exchanger coupled to the AL600 cryocoolers adds the possibility of speeding up the cold down

Baby-IAXO Cryogenic concept – Stationary operation

- Helium gas circuit coupled to AL600 cryocoolers purged.
- Current leads directly coupled to Al600 cryocoolers:
 - Lowest loss of cooling power
 - Cryocoolers electrically floating
 - Flexible interface on the cryostat
- Back-up LN2 heat exchanger for >10 kA operation.
- Cold mass cooled by 2nd stage of the PT420 cryocoolers:
 - Cool down from 50 K
 - Cold mass has high thermal conductivity
 - No need for a gas cooling circuit.

Baby-IAXO Cryogenic heat load – At 50 and 4.5 K

	Heat load @50K [W]	Heat load @4.5K [W]
Radiation	165	4.9
Supports	4.3	0.18
Current leads	840 (2)	1
Joints	-	1
Cryofan	35	
Total	1000	7.1
+20% margin	1200	8.5

4 Cryomech PT420 1st stage:

- All heat loads except current leads
- Cooling down of thermal shield
- 2 Cryomech AL600:
 - Intercept current leads @ 60 70 K
 - Cool down of cold mass down to 50 K
- 4 Cryomech PT420 2nd stage:
 - All heat loads at 4.2K
 - Cool down of cold mass down from 50 K.

	PT420	AL600	Total
Number of cryocoolers	4	2	6
Cooling power 1st stage[W]	55 ⁽¹⁾	500 ⁽²⁾	1275
Cooling power @4.5K [W]	2.5	-	10

⁽¹⁾ Temperature 45K

⁽²⁾ Temperature 70K

7. Baby-IAXO Conclusion

CERN

- New and original magnet system for solar axions search.
- A fully functional technology development system.
- Dry cooling system for 10 kA operation
 2 GM single stage + 4 double stage PT cryocoolers.
- Cool-down of 20 t cold mass using cryocoolers in 20 days.
- 1st stage of current leads independently cooled.
- Conduction cooled cold mass.
- He gas circulators (cryofan) circuits for cool down of cold mass and keeping thermal shield $\Delta T < 5$ K.
- Back-up LN2 heat exchanger for I>10 kA and faster cool down.
- Project construction approval expected late 2019 for start of construction in 2020.

