

Testing of SHIIVER MLI Coupons for Heat Load Predictions

W L Johnson¹, D Oberg², D Frank³, V Mistry³, and F D Koci¹

¹Glenn Research Center, Cleveland, OH, 44135 USA

²Aerospace Fabrication and Materials, Farmington, MN, USA

³Lockheed Martin Advanced Technology Center, Palo Alto, CA USA

2019 Cryogenic Engineering Conference, Hartford CT July 21st – 25th, 2019

SHIIVER Overview

SHIIVER Blanket Testing

Objective: Perform coupon testing to enable prediction performance of SHIIVER MLI blankets as well as scaling of the performance to larger applications

Considered several different types of test to run, settled on four tests:

- Two different numbers of reflective layers
- Adding a seam
- Effect of structural attachments

Test	Description	Number of MLI	# of Seams	# of Structural
Number		Layers		Patches
1	Baseline Test	50	1	0
2	Reduced layer Count	30	1	0
3	Two Seams	30	2	0
4	Structural Attachments	30	1	4

CoMPACT Calorimeter

MLI Design and Construction

- Each blanket comprised of 10 layer sub-blankets (50 layer had 5, 30 layer had 3)
 - Sub-blankets held together by fastener tape strip with ~2 inch overlap, held by clothing tags, not sewn
 - Seams clocked at least 4 inches from previous sub-blanket seam
- Inner and Outer sub-blanket had reflective covers facing the outside of the blanket
 - Other blankets had laminated netting on outer reflector
- Layer density varied between 15 lay/cm and 18.5 lay/cm
- Anchored to calorimeter via 6 click-bond 9208 (through inner subblanket only)

Effect of number of layers

- First two tests were focused on effect of layers
 - 50 layers
 - 30 layers
- Results showed nearly identical heat fluxes between the two blankets
- As a result of testing, 30 layers was chosen for SHIIVER application

Configuration	Q _{total} ,	Q _{net} , W	Thickness, cm	Layer Density, Lay/cm	q _{net} , W/m ²
50 Layers	0.937	0.931	2.7	18.5	0.670
30 Layers	0.928	0.923	1.9	15.8	0.674

SHIIVER Seams Testing

- Effect of seam measured by putting two seams into blanket
- Lockheed ATC analysis showed that two seams didn't interfere with each other thermally.
- Effect of seam approximately 0.15 W/m in this configuration
- SHIIVER MLI designed to minimize seam length on 8.4 m tank

Thermal Model by Lockheed ATC

Configuration	Q _{total} , W	Q _{net} , W	Q _{seam} , W/m	% change
Single Seam	0.928	0.923	0.147	
Double Seam	1.062	1.057	0.394	14.6%

SHIIVER Structural Attachments

Test article included 4 patches as shown in the pictures to the right.

Stitching only in outer sub-blanket

Thermocouples on the inside of the blanket as shown below.

SHIIVER Attachment Thermal Results

Thermal Testing:

Configuration	Q _{total} ,	Q _{net} ,	Q _{attach} ,	WBT, K	T _{stitch} ,	T _{blanket}
Baseline	0.928	0.923		261		
Attachments	0.979	0.974	0.052		235	207

Thermal Penalty of 52 mW for four patches

Thermal Modeling:

Heat Loads for one stitch or hole	WBT = 260 K CBT = 230 K		WBT = 260 K CBT = mixed*
Conduction (mW/thread)	0.10	0.21	0.10
Radiation (mW) all holes	3.4	5.7	5.7
Total (mW)	11.8	22.6	13.8

^{*}Radiation cold boundary of 200 K, conduction cold boundary of 230 K

Thermal Penalty of 55 mW for four patches

Pull Test on Attachments

- MLI tabs expected to take approximately 284 N each
- Low temperature pull testing at -80 ° C to determine failure load
- Five coupons tested
 - All five exceeded 498 N (1.75 Safety Factor)
 - Due to test hardware issues, two took 4-5 loading cycles at 498 N
 - Highest failure: 655 N (two failed here)
 - Other failed at 509 N

Video of Testing

