

Mechanism of flux pinning for APC Nb₃Sn

Xingchen Xu, Fermilab

Xuan Peng (Hyper Tech), Jacob Rochester, Mike Sumption (OSU), Jae-Yel Lee (Northwestern)

The work is supported by an Fermilab LDRD and a US DOE SBIR.

How to enhance flux pinning of Nb₃Sn

Enhanced flux pinning \rightarrow boost in Nb₃Sn J_c . How?

Internal oxidation approach:

A long history. First made a success in Nb₃Sn wires: 2014.

X. Xu, M. Sumption, X. Peng, Appl. Phys. Lett. 104, 082602 (2014).

Late 2014: proposed to be applied to several wire types, including PIT.

X. Xu, M. Sumption, X. Peng, Adv. Mat., 27, 1346-1350 (2015).

- PIT design: no change in the manufacturing process, but two modifications in raw materials:
 - Powder: NbSn₂+Cu+Sn → Sn+Cu+SnO₂
 - Tube: Nb-4at.%Ta → Nb-4at.%Ta-1%Zr (or Hf)
- Present: developing wires with 61-217 filaments, a
 HyperTech-FNAL-OSU collaboration.

Non-oxidation approach:

- Hf itself is a grain refiner: found at FSU.
 S. Balachandran et al., Supercond. Sci. Technol. 32, 044006 (2019).
- Nb-4at.%Ta → Nb-4at.%Ta-1%Hf.

This talk is mainly about pinning mechanism of the internal oxidation route.

NZE-700x55h_007 NZE-700x55h

100 nm

APC can significantly enhance J_c

Non-Cu J_c of recent APC wires (made in Hyper Tech):

Wire	Composition	O amount in filaments	Tested by
T3912	4%Ta, 1%Zr+O	Insufficient in some	FNAL, OSU
T3935	4%Ta, 1%Zr+O	Enough in all	FSU

The Nb₃Sn layer J_c is even much higher:

Non-Cu J_c of APC can still be much higher by:

- (1) Forming more Nb₃Sn in filaments (32% \rightarrow 40%)
- (2) Improving filament quality
- (3) Heat treatment optimization (lower HT T)

 J_c boost in Hf w/o O: see talks by FSU colleagues

What causes enhanced J_c : Factor 1 – point pinning

What causes the enhanced J_c ? (1) Zr(Hf)O₂ particles as point pinners, (2) refined Nb₃Sn grain size.

Added point pinning: (1) boosts $F_{p,max}$, (2) causes F_p -B peak shift: $0.2B_{irr}$ (grain boundary) $\rightarrow 1/3B_{irr}$.

Wire	F_p -B curve peaks at	
Standard RRP	5 T, ~0.2 <i>B</i> _{irr}	
Nb-Ta-1%Hf + O	9.1 T, ~0.34 <i>B</i> _{irr}	
Nb-Ta-1%Hf, no O	5.4 T, 0.21-0.22 <i>B_{irr}</i>	

Shift in F_p -B curve peak \rightarrow much flatter J_c -B curve

Thanks to Van Griffin for measuring the *M-B* loops for us, using the 14 T VSM in ASC/FSU.

Lower magnetization at low fields reduces low-field instability, field errors, and a.c. losses.

The Nb-Ta-1%Hf wire +O wire had thin Nb₃Sn layer due to under-reaction.

Point pinning: what causes it?

Microscopy studies by Jae-Yel Lee on a wire T3912 (Nb-Ta-1%Zr + O), reacted at 650 °C:

1. HR-STEM study

2. Atom Probe Tomography (APT) study:

Average number density: $2x \cdot 10^{23}/m^3$.

For 50 nm grain size, in average there are >10 particles in each grain – high density of point pinners.

From these results, we can verify that:

- The particles seen in TEM images are ZrO₂.
- ZrO₂ particle density is high.
- Particles have diameters similar to grain boundary width, suitable as point pinners.

Factor 2 – Grain size refinement: what causes it?

- Grain sizes of internally oxidized wires are ~ half of standard wires. Mechanism?
- To understand its mechanism, we need to answer one question first: what role does O play?
- Both Hf (or Zr) w/ and w/o O → refined grain size: is O really needed?

T3916 (Nb-4at.%Ta-1at.%Hf, no O): HT at 650 °C:

T3914 (Nb-4at.%Ta-1at.%Hf, with O): HT at 675 °C:

B31284 (Bruker PIT): HT at 605 °C (ultra low T):

Similar thing was seen in Nb-Ta-1%Zr wires:675 °C, 70 nm (~2 at.% O) vs 110 nm (~0.5 at.% O).

- Hf (or Zr) itself refines Nb₃Sn grain size. See talks by FSU Colleagues.
- However, adding O makes Nb₃Sn grain size significantly smaller. Possible mechanisms:
 ZrO₂ particles (1) serve as Nb₃Sn nucleation centers, (2) inhibit Nb₃Sn grain growth (Zener pinning).

Summary

- \square Nb₃Sn J_c can be significantly boosted by enhancing flux pinning:
 - The internal oxidation approach forms ZrO₂ (or HfO₂) particles.
 - Hf (or Zr) itself has effect to refine Nb₃Sn grain size.
- ☐ Summary of how the internal oxidation affects the properties:

☐ Further understanding still needed:

Point pinning vs enhanced GB pinning: which dominates?

Acknowledgement

- Some very helpful discussions with FSU Colleagues.
- Some tests were performed at the NHMFL, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida.
- The tests were greatly helped by Jan Jaroszynski and Griffin Bradford.
- Magnetization-field (M-B) measurements using a 14 T VSM in the FSU by Van Griffin.
- Ian Pong for providing the RRP and PIT wires for HL-LHC that were used as references.
- Some helpful discussions in the MDP collaboration meetings.

Thank you for your attention!

