

High Level Gamma Radiation Effects on Platinum and Silicon Diode Cryogenic Temperature Sensors

Dr. Scott Courts
July 22, 2019, CEC-ICMC, Hartford, CT

Background - 1

- High Energy Physics applications are driving radiation hardness requirements in cryogenics
- Applications such as ITER and the FCC require SC magnets to steer particles and they require cryogenic systems for use to below 4.2 K, including thermometry
- Depending upon location, radiation estimates for the FCC have ranged from 5 MGy to 10 GGy
- It's not the goal to irradiate the supporting infrastructure, but it invariably happens

Background - 2

- CernoxTM Temperature Sensors
 - Very good in radiation and magnetic field
 - Need individual calibration, more complex instrumentation
- Desire for cheaper solution
 - Interchangeability
 - Simpler instrumentation

This work examines the effects of high level gamma radiation on Platinum and Silicon Diode

Temperature Sensors

Platinum Resistance Thermometers (PRTs)

Model PT-103

- 14 K 873 K
- 70 K 873 K interchangeability
- Wire-wound, 100 Ω
- Ceramic encapsulated

Model PT-111:

- 14 K >650 K
- 70 K 673 K interchangeability
- Wire-wound, $100~\Omega$
- Glass encapsulated

Silicon Diode Thermometer (SiDT)

Model DT-670-SD SiDT

- 1.4 K 325 K Interchangeability
- Really a transistor
- Not good in magnetic fields

Experimental design

Sensors

- PRTs 40 of each model divided into 10 groups
- SiDT 20 sensors divided into 10 groups

10 kGy, 25 kGy, 50 kGy, 100 kGy, 250 kGy, 500 kGy, 1 MGy, 2.5 MGy, 5 MGy

Performed at SNL Gamma Irradiation Facility

- Linear Array Co-60 source
- Dose rate ≈ 10 Gy/s
- Room Temperature irradiation
- Unpowered during irradiation

Measurements

- Calibrate → Irradiate → Calibrate
 - Calibrations performed in Lake Shore's Temperature Calibration Facility
 - PRTs: 58 points spanning 14 K 325 K temperature range, SiDTs: 71 points panning 1.4 K – 325 K temperature range

Temperature	Uncertainty (± mK)	
(K)	PT-103 / PT-111	DT-670-SD
1.4		7
4.2		5
10		6
20	9	9
30	9	31
50	10	37
100	11	32
200	17	33
300	24	35

PRT results given as Calibration shifts calculated as $\Delta T = \Delta R / S_T$ where $\Delta R = (R_{final} - R_{initial})$ and $S_T = Temperature Sensitivity$ (Similar for SiDTs with Resistance replaced by voltage)

PT-103 PRT: Average ΔT after irradiation

PT-111 PRT: Average ΔT after irradiation

DT-670-SD SiDT: Average ΔT after irradiation

DT-670-SD SiDT: Average ΔT after irradiation

DT-670-SD ΔT after calibration + 2 years at 298 K

DT-670-SD Δ T after calibration + 2 years at 298 K

Discussion – PRT models

PT-103

- No discernable effects from irradiation up to 5 MGy
- Recalibration results within uncertainty limits

PT-111

- Recalibration results within uncertainty limits
- Some darkening of glass at three highest irradiation limits
- Changes in glass may have caused slight increase in thermal resistance in 14 – 20 K range and resulted in ionic shunting at higher temperatures
- No change after 2 years post-irradiation

Discussion – DT-670-SD SiDT

- More complicated behavior
 - Large, positive temperature offsets above 50 K
 - Smaller, negative temperature offsets below 30 K
 - Significant thermal annealing above 50 K after storage
 - No thermal annealing below 40 K after storage
- Might be best explained by radiation interaction via Compton effect creating:
 - Shallow state defects that create ionic shunting at higher T
 - Deep state defects that modify the p-n junction dynamics or create new scattering centers at low T

Conclusions

- Tested: 40 PT-103, 40 PT-111, and 20 DT-670-SD
- Gamma radiation: Co-60, 10 Gy/s from 10 kGy to 5 MGy
- PRTs show excellent behavior over 14 K -325 K range
 - Usable as an interchangeable thermometer from 70 325 K
- DT-670-SD SiDT
 - Large, positive ∆T offsets above 50 K
 - Small, negative ΔT offsets below 30 K and 50 krad dose
 - Significant thermal annealing above 50 K; little below 40 K
 - Usable as an interchangeable SiDT for 1.4 K 30 K range in radiation doses up to 50 kGy

