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An Important Problem

Liquid natural gas (LNG) boiling process concerns majority of LNG applications because of a
need of its regasification. Depending on pressure an equilibrium temperature of LNG is 112-
160K. The low boiling temperature of LNG makes the vaporisation process complicated. An
important risk of the regasification is related to a possibility of a solid phase formation (freezing
of a heating fluid).
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Fig. 1: Schematic of a system under

isothermal solidification [2].

The effects of solidification and the melting processes were
simulated using the OpenFOAM built-in model solidifica-
tionMeltingSource. The built-in model utilizes an enthalpy-
porosity approach. It assumes that the phase change occurs
at melting temperature, Tmelt [1]. Main equations governing
isothermal solidification are listed below:

• Continuity
∇ · u = 0

• Momentum

ρ0
δu

δt
+ ρ0∇ · (uu) = −∇p + µ0∇2u + Sb + Sd

• Energy

ρcp
∂T

∂t
+ ρcp∇ · (uT ) = ∇ · (k∇T )− Sh

Numerical model

The numerical model developed for this research, was created based on the concept presented
in work [3]. The computational domain was divided into separated regions for water, LNG
(modeled as a solid) and pipe or plate. In such consideration, LNG boiling process is replaced
by conduction heat transfer.

Fig. 2: Numerical geometry considered in the proposed numerical model.
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Fig. 3: LNG heat transfer properties transformation from boiling (left side) to conduction (right side).

Results

• Ice layer formation strictly depends on the heat transfer conditions. The dominant factors are: the
heating medium temperature and the LNG boiling heat transfer coefficient.

• Sensitivity analysis shows the overproportional influence that an increase in the HTC of LNG has
on the potential risk of freezing (Fig. 5).
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Fig. 4: Liquid fraction inside the 25 cm high water channel for different

Rew and 300 K temperature of the inletting water.

Fig. 5: Sensitivity analysis of the HTC of LNG on the ice layer thickness

with respect to Rew and temperature.

• Freezing dynamics depends on spacing between pipes - interaction between pipes.
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Fig. 6: Freezing dynamics in emergency no-flow cases.

(b) t = 20 s

(a) t = 10 s

(c) t = 40 s

Fig. 7: Liquid fraction for no-flow case with

4 mm spacing.

• Based on observation of local ice fraction it is possible to determine the critical Reynolds number
under which the flow will be blocked by ice, Recr ∼ 50.

Re =
UmaxD

ν

Umax =
S

S −D
Usf

Fig. 8: Scheme of a staggered tube bank.
Fig. 9: Local ice fraction variation with respect to Reynolds number.

Results cont.

• There is a possibility to determine the heat flux in two ways: analyzing temperature dis-
tribution inside LNG and a pipe, or based on a water inlet/outlet temperature difference.

• Both concepts show decreasing of total heat flux with lowering Reynolds number.

• Around critical Reynolds number changes in the heat flux are more noticeable.
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Fig. 10: Variation of the heat flux values calculated with the method based on

temperature distribution along solid regions of LNG and pipe with respect to the

Reynolds number.
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Fig. 11: Temperature distribution along the

middle pipe for case with spacing distance

equals 4 mm and Re = 66.

(a) Liquid fraction

(b) Velocity

(c) Temperature

Fig. 12: Visualizations of the liquid fraction,

velocity and temperature fields for case with

spacing equals 4 mm and Re = 66.
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Fig. 13: Variation of the heat flux values calculated with the method based on the water

temperature difference between the inlet and outlet patches with respect to the

Reynolds number.
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[1] Beata Niezgoda-Żelasko. “The enthalpy-porosity method applied to the modelling of the ice slurry melting
process during tube flow”. In: Procedia Engineering 157 (2016), pp. 114–121.

[2] Mahdi Torabi Rad. “solidificationMeltingSource: A Built-in fvOption in OpenFOAM R© for Simulating Isother-
mal Solidification”. In: OpenFOAM R©. Springer, 2019, pp. 455–464.

[3] Zbigniew Rogala, Arkadiusz Brenk, and Ziemowit Malecha. “Theoretical and Numerical Analysis of Freezing
Risk During LNG Evaporation Process”. In: Energies 12.8 (2019), p. 1426.


