Gas propagation following a sudden loss of vacuum in a pipe cooled by He | and He Il.
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Vacuum break in particle accelerators is a major concern due to risks associated with personnel and extensive equipment damage.
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Particle accelerator systems are cryogenic systems are composed of multiple segments called cryomodules which contain SRF T—=2 iy = iy - C(T, T P) = py RTy c(T, T, P) PM = pRT, gzz \ézll?iﬁgium ressure
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