
Experimental and numerical investigation of 2 K heat exchanger for superfluid helium cryogenic system at KEK

A Kumar^{1,2}, H Nakai^{1,2}, K Nakanishi^{1,2}, H Shimizu^{1,2}, Y Kojima², K Hara² and T Honma² ¹SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan ²High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Introduction

- ☐ The 1.3 GHz Nb superconducting radio frequency (SRF) cavity operates at temperatures < 2.0 K, cooled with superfluid helium (liquid helium 'LHe' < 2.17 K).
- ☐ 2 K heat exchanger (2K HX) in series with Joule-Thomson (JT) valve is employed in the cryogenic system, to produce superfluid helium continuously.
- ☐ 2K HX recovers sensible heat from outgoing 2.0 K gaseous helium (GHe) from the helium jackets of SRF cavities.
- ☐ JT valve maintains the level and pressure of superfluid helium in the He II tank.

Objective

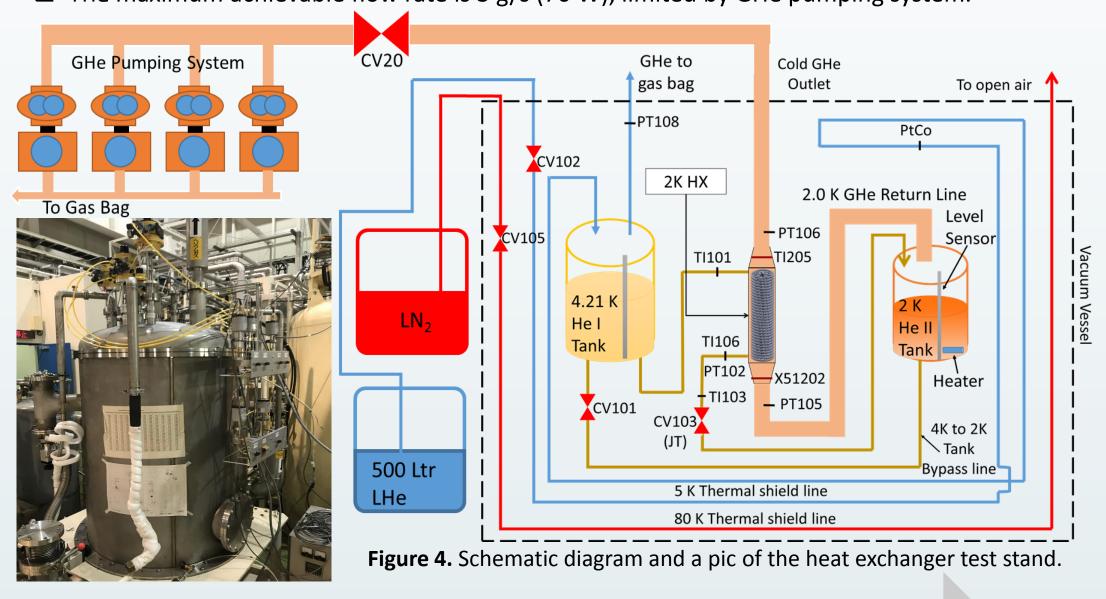

- ☐ 2K HX is made of OFC copper with thermal capacity of 100 W (4.5 g/s of mass flow rate).
- ☐ Hot LHe flows through the helical coils, recovering sensible heat from the cold GHe flowing over the laminated fins in counterflow direction, with identical mass flow rates (operational mode).
- \Box Performance is needed to be determined by a factor known as **effectiveness** $\left(\varepsilon = \frac{Q_{\text{LHe or GHe}}}{\dot{Q}_{\text{max}}}\right)$
- ☐ Also, the GHe pressure drop through the 2K HX needs to be determined.

Table 1. 2K HX geometric parameters.

Geometric Parameters	Difficitions			
Geometric Parameters	2K HX			
Helical tube parameters				
Tube outer diameter (thickness)	6 (t1) mm			
Helix diameter (pitch)	75 (9) mm			
Number of loops	30			
Laminated Fin dimensions		Figure 2. Type II 2K HX		
Sector radius	35 mm	118010 21 1900 11	21(11)(
Sector angle	50 degrees	[∏] 4.4 K LHe	∯ >2.2 K LHe	
Fin thickness	0.5 mm			
Hole diameter	10 mm			
Total dimensions			2 K GHe	
Heat exchanger axial length	270 mm		900000	
Heat exchanger diameter	82 mm	Figure 3. Axial view	v of 2K HX	
		riguie J. Aniai viev	V OI ZIVII/V.	

Experimental Methodology – Heat Exchanger Test Stand

- ☐ A heat exchanger test stand is designed and manufactured to test the 2K HXs.
- ☐ In the test stand, hot LHe flows through the 2K HX to He II tank via JT valve (CV103).
- ☐ Hot LHe is subcooled to >2.2 K, recovering coldness from outgoing 2.0 K GHe from He II tank.
- ☐ The maximum achievable flow rate is 3 g/s (70 W), limited by GHe pumping system.

Open JT Valve & Filling both Cooldown of 80K Pumping on Heater power He II tank and 5K Shields storage tanks

Numerical Methodology – ANSYS CFX®

- ☐ ANSYS CFX is used to simulate the 2K HX.
- ☐ Fluid properties are varied with respect to pressure and temperature.
- ☐ 2K HX operates in steady state condition.

Table 2. 2K HX domains and initializing conditions.

Domain	Fluid/	Temperature	Turbulence	Turbulence	Wall
	Solid	(K)	Intensity (%)	Model	Function
GHe	GHe	2	4.4	k-ω SST	Automatic
LHe	LHe	4.4	3.6	k-€	Scalable
OFC	OFC	4.4	K with no fouli	ng resistance	

Table 3 Roundary conditions for 2K HX in ANSVS CEX®

lable 3.	Boundary	conditions	TOR ZK HX IN A	ANSYS CFX°.	
CI	Fluid/	Mass	Turbulence	Static	Total
Boundary	Solid	Flow Rate	Intensity	Temperature	Pressure
	Juliu	[gs ⁻¹]	[%]	[K]	[kPa]
GHe Inlet	GHe	Upto 3	4.4	2	-
GHe Outlet	опе	-	-	-	3
LHe Inlet	LHe	Upto 3	3.6	4.4	-
LHe Outlet	гпе	-	-	-	125
OFC	OFC	Int	erface betwe	een LHe and GF	łe
Wall	SS304	-	-	Adiabatic	-

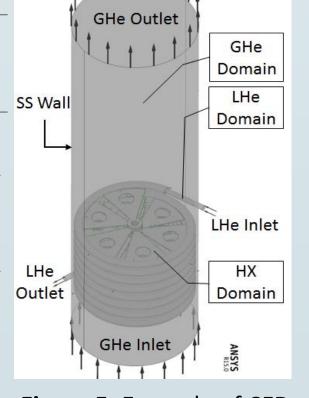
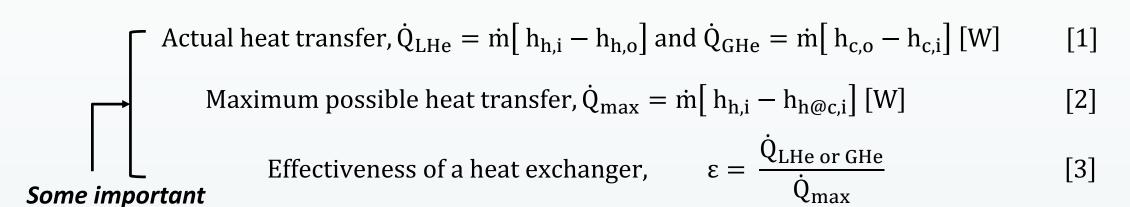
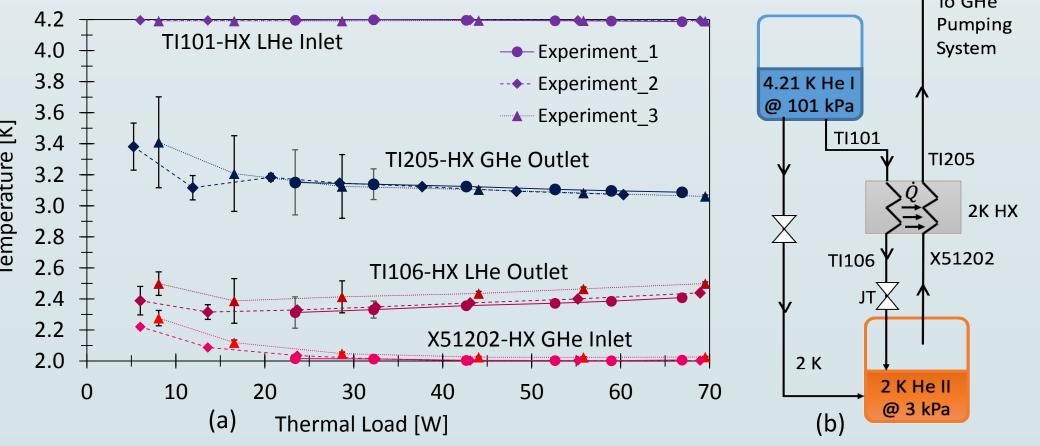


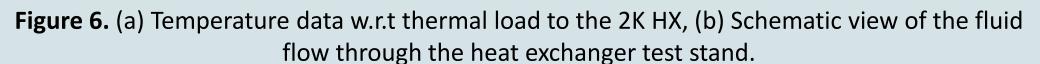
Figure 5. Example of CFD model for 2K HX.

Results & Discussions

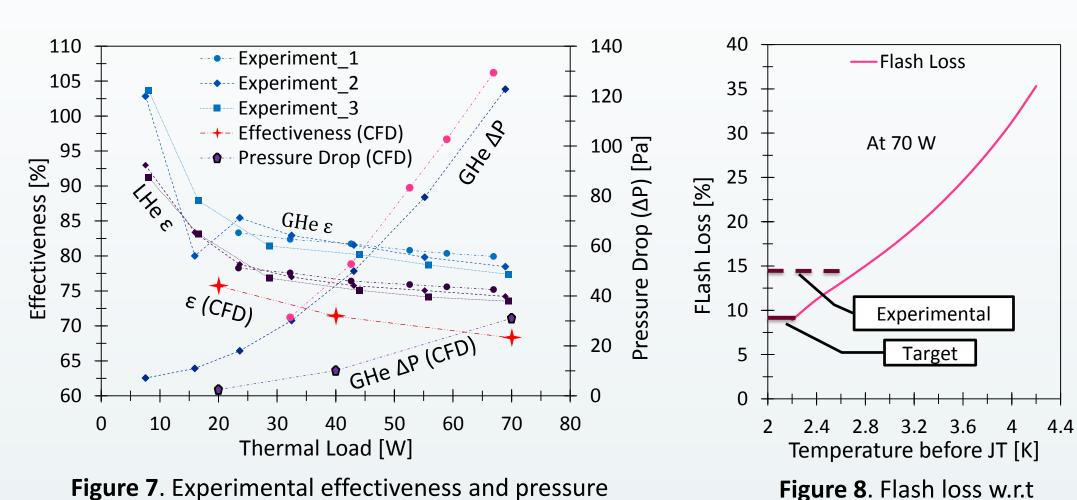
relations

Numerical Results


Table 4. Summarized results from ANSYS CFX® simulations

Danamatana	2 K Heat Exchanger		
Parameters	20 W	40 W	70 W
Effectiveness (ε-NTU) [%]	88.5	83.3	78.8
Effectiveness (CFD) [%]	75.7	71.8	68.3
Outlet temperature for LHe (CFD) [K]	2.59	2.65	2.78
Outlet temperature for GHe (CFD) [K]	3.17	3.11	3.05
Flash loss for LHe after JT (CFD) [%]	13.6	14.2	15.4
Pressure drop in GHe (CFD) [Pa]	2.5	10.1	31
Enthalpy balance error (%)	0.9	1.1	1.2


- \Box Effectiveness @ 70 W (3 g/s) 68% and GHe pressure drop @ 70 W (3 g/s) 31 Pa.
- ☐ LHe temperature at the outlet of 2K HX keeps on rising with increasing thermal loads.
- \square Heat transfer coefficient for fluids, h is $\alpha \operatorname{Re}^n$, where n is <1 and $\operatorname{Re} = f(\dot{m})$.
- ☐ Increase in mass flow rate for both fluids reduces effectiveness of the 2K HX.

Experimental Results

- ☐ LHe temperature (TI101) at the inlet of 2K HX remains constant throughout the experiment.
- ☐ LHe temperature (TI106) at the outlet of 2K HX keeps on rising with increasing thermal loads.
- ☐ GHe temperature (X51202) at the inlet of 2K HX, initially is >2.0 K due to excess heat from level sensor (above He II level) and low flow rate.
- ☐ GHe temperature (TI205) at the outlet of 2K HX always reduces with increasing mass flow rate.

drop of 2K HX compared with CFD results. temperature of LHe before JT.

- ☐ Effectiveness (from LHe) @ 70 W (3 g/s) 74% and GHe pressure drop @ 70 W 123 Pa.
- ☐ 2K HX's LHe outlet temperature (TI106) at 70 W is 2.45 K, with GHe inlet temperature of 2.0 K.
- ☐ Compared to the CFD simulations, experimental effectiveness is 6% higher.

 \Box Enthalpy balance error of the 2K HX is 5% at 70 W, with $\dot{Q}_{GHe} > \dot{Q}_{LHe}$.

- ☐ Flash loss (amount of vapor generated during JT expansion) @ 70 W 14%.
- ☐ Increase in mass flow rate for both fluids reduces effectiveness.

Conclusion

- \square Required effective operation (>83%) possible below 20 W (0.855 g/s) of thermal load.
- ☐ GHe pressure drop of <100 Pa is possible below 65 W of thermal load.
- ☐ Losses after JT expansion are smaller and gives 86% of superfluid helium (experimental).
- ☐ Effectiveness reduces as the thermal load to the 2K HX increases.
- Design will be optimized to increase its effectiveness and reduce the GHe pressure drop.
- ☐ Effectiveness error between experiments and CFD is 6%.

Future Studies

- ☐ Current results will act as the benchmark for the optimization of the current design.
- ☐ Modifications required to reduce error between CFD simulation and the experimental results.
- ☐ Experiments will be performed to determine the heat transfer coefficient of GHe.

Contact Information

- ☐ Name Ashish Kumar
- ☐ Email ashish@post.kek.jp, 179ashish1989@gmail.com