Compact cryogenic test stand for superconducting magnets characterization

Romain Bruce, Sacha Soulerin, Denis Bouziat, Robin Cubizolles, Bernard Gastineau, François-Paul Juster, Philippe Bredy CEA Paris - Saclay, IRFU/DACM, 91191 Gif-sur-Yvette, France

SARAF (Soreq Applied Research Accelerator Facility)

- Continuous wave (CW), proton and deuteron accelerator
- 20.1 m long Superconducting Linac (SCL) made of 4 Cryomodules
- 20 superconducting identical Solenoid Packages (SP) located between cavities
- Maximum peak field on-axis is 5.8 T
- Operating Pressure: **1.25 bar** and Operating Temperature: **4.45 K**

Solenoid package test bench

- Specific "insert" designed with a phase separator (5 L) and a current lead tank connected at the bottom of the solenoid package and placed in a **0.4 m** diameter and **1.7 m** height cryostat.
- **32 voltage taps** to measure the electronic behavior of the different coils and their current leads
- Pressure regulation at 1.25 bar inside the helium tank using Burkert© automatic valve
- 1 liquid helium level sensor inside the phase separator tank
- 4 Cernox© (1070) at the surface of the helium tank to monitor the temperature
- National instrument© + LabVIEW© Software for the acquisition of the temperature, pressure, voltage and magnetic field

Current lead cluster

Position of the temperature sensors on the current leads

- 3 CAEN© power supplies : One delivers a maximum current of **100** A and the other two delivers a maximum of **25 A**
- "Burn-proof" brass braid current leads
- 4 platinum sensors (PT100) along two current leads glued at the surface of the stainless steel tube surrounding the brass braid
- Red-Y Mass flow meter (0.6 to 600 mL/min) and Burkert solenoid valves connected to each of the 3 current leads pairs
- National Instrument© Ni 9265 card with LabVIEW© software to control the valve and regulate the helium mass flow of the current leads

Brazing tool

Brazing tool attached

on the current leads

Specific tool for the silver brazing process

- **Peek** support maintains the 6 current lead extensions and electrically isolates each current lead
- 6 aluminum blocks with ceramic heater, placed on the top increase the temperature up to 250 K
- 1 PT100 placed inside one of the aluminum blocks to regulate the temperature

Magnetic field measurement system

- 8 3D Hall effect probes used to monitor the magnetic field
- **6** sets of Hall sensors inside the beam tube along the beam axis

(4 x 3D and 2 x 3 x 1D)

2 sets of Hall sensors outside the solenoid package close to the steering coils to check the fringe field $(2 \times 3 \times 1D)$

- Individual 3D and 3 x 1D sensor supports, with the main support to be in the beam tube
- All the sensors are connected to Arepoc© USB2AD-modules (programmable resolution 20-24 bits) controlled with LabVIEW©

Current leads Tests results

- Tests at nominal helium mass flow and without helium flowing inside it
- Voltage 5% lower than the simulations performed at nominal conditions
- Voltage never reached the maximum value of the simulation (84 mV) without helium flowing inside the current lead
- No significant thermal or electrical unbalances

- Flow 3,94 NI/mn
 Flow 1,97 NI/mn
 Flow 0,98 NI/mn
 Flow 0 NI/mn
 Flow 0 (after 2h20)
- No hot spot (above 300 K)
- Temperatures below the temperature profile with 62% of the nominal mass

Conclusions

- First result on the prototype current leads cluster has shown better thermodynamic and electric behavior than expected
- The test bench is ready for future tests on the prototype solenoid package

