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INTRODUCTION 

•  Transfer of cryogenic fluids from the storage Dewar to the end applications is 

a daily occurrence in laboratories / industries. 

•  Vacuum or Super-insulated transfer lines are efficiently used for the above 

applications. 

• Most of the time two-phase flow occurs during the transfer process. 

• It is very important to measure void fraction (liquid hold up). 

SELECTION OF TUBE MATERIAL FOR CAPACITANCE  

SENSOR 

This work was carried at Centre for Cryogenic Technology, Indian Institute of Science, Bangalore with financial support of Board of Research in Nuclear Sciences (BRNS), India.   

MEASUREMENT OF DIELECTRIC CONSTANT OF BAKELITE 

EXPT. SETUP FOR SENSOR CALIBRATION 

• Glass tube deformation is minimum among other insulating tube 

materials. Handling and making end connections for glass tubes is quite 

difficult.  

• Deformation of Bakelite material is next to glass and is considered for the 

capacitance sensor development. 

Fig. 1. Deformation on outer diameter. 

 An attempt has been made to develop simple capacitance sensors for 

measuring the void fraction for LN2 flow. 

 Thermo-structural analysis has been done for different insulating materials. 

 Bakelite has been selected as the insulating materials. 

 Experimental setups have been developed to measure the dielectric 

constant and the capacitance of the developed sensors at 77 K. 

 Capacitance simulation has been done with the developed sensors by 

ANSYS Maxwell software and the results are in good agreement with the 

experimental results. 

 The developed capacitance sensors are calibrated with standard sensor. 

 These simple sensors will be very useful for void-fraction measurement of 

LN2 flow. 
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Fig. 4. (a) Sample Chamber.   (b) Experimental setup. 

Fig. 5. Cross sectional 

view of a concave 

capacitance sensor. 

Fig.10. Schematic of Expt. Setup for calibration of Capacitance sensors. 

CONCLUSIONS 

MOTIVATION 

• Many techniques are available to measure the void fraction. 

• Implementation of these techniques to cryogenic fluid flow is 

sometimes difficult and expensive. 

• An attempt has been made to develop simple capacitance sensors for 

measuring the void fraction for LN2 flow. 
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DESIGN OF CAPACITANCE SENSOR 

Fig. 6. Simulation results for C1, 

C2 and C3. 

CALIBRATION CURVE 
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Fig. 2. Deformation on inner diameter. 

Fig. 3. Total deformation on 19 mm ID and 25 mm OD Bakelite tube. 
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Sl. No Capacitor D1 in mm D2 in mm L in mm 

1 C1  19 26.2 50 

2 C2 19 31.6 50 

3 C3 19 38.0 50 

Table 1: Capacitance sensor dimensional parameters at β = 160 ̊
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Fig. 7. Capacitance vs.  

Frequency for C1. 
Fig. 8. Capacitance vs.  

Frequency for C2. 

Fig. 9. Capacitance vs.  

Frequency for C3. 

Fig .11. 

Calibration 

curve for C1. 

Fig. 12. 

Calibration 

curve for C2. 

Fig.13. 

Calibration 

curve for C3. 

Fig. 14. 

Calibration 

curve for C4 

(FRP tube). 

Sl. No Capacitor Cmax pF Cmin pF ΔC pF 
Experimental 

ΔC pF 
Simulation 

1 C1 5.1 4.84 0.26 0.23 

2 C2 6.26 5.93 0.33 0.31 

3 C3 4.17 3.99 0.18 0.16 

Table 2. Cmax, Cmin and ΔC for developed sensors 
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