

Design optimization and Calibration of a void fraction measurement capacitance sensor for LN2 flow

H.N. Nagendra^{1, 2}, Ravi Verma^{1, 2,4}, Pankaj Sagar^{1, 2}, Kashif Akber¹, S. Kasthurirengan¹, N.C. Shivaprakash², A.K. Sahu³ and Upendra Behera^{1,*}

Abstract ID C2Po1A-06[20]

Frequency (Hz)

Fig. 9. Capacitance vs.

Frequency for C3.

¹Centre for Cryogenic Technology, Indian Institute of Science, Bangalore, India ²Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India ³Institute for Plasma Research, Bhat, Gandhinagar, India ⁴Presently at School of Mechanical Engineering, VIT University, Vellore, India

E-mail: behera@iisc.ac.in

INTRODUCTION

- Transfer of cryogenic fluids from the storage Dewar to the end applications is a daily occurrence in laboratories / industries.
- Vacuum or Super-insulated transfer lines are efficiently used for the above applications.
- Most of the time two-phase flow occurs during the transfer process.
- It is very important to measure void fraction (liquid hold up).

MOTIVATION

- Many techniques are available to measure the void fraction.
- Implementation of these techniques to cryogenic fluid flow is sometimes difficult and expensive.
- An attempt has been made to develop simple capacitance sensors for measuring the void fraction for LN2 flow.

SELECTION OF TUBE MATERIAL FOR CAPACITANCE **SENSOR**

Fig. 1. Deformation on outer diameter.

Fig. 2. Deformation on inner diameter.

Fig. 3. Total deformation on 19 mm ID and 25 mm OD Bakelite tube.

- Glass tube deformation is minimum among other insulating tube materials. Handling and making end connections for glass tubes is quite difficult.
- Deformation of Bakelite material is next to glass and is considered for the capacitance sensor development.

MEASUREMENT OF DIELECTRIC CONSTANT OF BAKELITE

Fig. 4. (a) Sample Chamber. (b) Experimental setup.

- · It is very important to measure the dielectric constant of tube material for capacitance simulation.
- The capacitance C, is defined as,

$$C = (\varepsilon_0 \xi_r) (A/d) \qquad \dots (1)$$

 $C = (\epsilon_{0} \epsilon_{r}) \text{ (A/d)} \qquad \dots \text{ (1)}$ Where ϵ_{0} = permittivity of free space = 8.84×10⁻¹² F/m, ϵ_{r} = relative permittivity, A = Area of electrode in m² and d = distance between the electrodes in m.

Equation 1 can be written as, $C_0 = (\varepsilon_0 \xi_r)_0$ (A/d)

 $(A/d) = \hat{C}_0 / (\epsilon_0 \epsilon_r)_0$

- $C_{b} = (\epsilon_{0} \epsilon_{r})_{b} (A/d) \dots (A)$ Substitute equation 3 in equation 4, we get $C_{b} = (\epsilon_{0} \epsilon_{r})_{b} (C_{0}/(\epsilon_{0} \epsilon_{r})_{0})$ C_{0} and C_{b} can found by simple experimental setup shown in Fig 4.
- Measured dielectric constant of Bakelite is 2.06 at 77 K.

DESIGN OF CAPACITANCE SENSOR

Fig. 5. Cross sectional

EXPT. SETUP FOR SENSOR CALIBRATION

Fig. 8. Capacitance vs.

Frequency for C2.

Fig. 7. Capacitance vs.

Frequency for C1.

Fig.10. Schematic of Expt. Setup for calibration of Capacitance sensors.

CALIBRATION CURVE

CONCLUSIONS

- ☐ An attempt has been made to develop simple capacitance sensors for measuring the void fraction for LN2 flow.
- ☐ Thermo-structural analysis has been done for different insulating materials.
- ☐ Bakelite has been selected as the insulating materials.
- ☐ Experimental setups have been developed to measure the dielectric constant and the capacitance of the developed sensors at 77 K.
- ☐ Capacitance simulation has been done with the developed sensors by ANSYS Maxwell software and the results are in good agreement with the experimental results.
- ☐ The developed capacitance sensors are calibrated with standard sensor.
- ☐ These simple sensors will be very useful for void-fraction measurement of LN2 flow.

REFERENCES

- ☐ Jianye Chen, Yuchen Wang, Wei Zhang, Limin Qiu and Xiaobin Zhang, Capacitance-based liquid holdup measurement of cryogenic two-phase flow in a nearly-horizontal tube, Cryogenics 84(2017), pp 69-75.
- ☐ Yuki Sakamoto, Laura Peveroni, Hiroaki Kobayashi, Tetsuya Sato, Johan Steelant and Maria Rosaria Vetrano, Void fraction measurement in cryogenic flows. Part I: Design and validation of a void fraction capacitive sensor, Cryogenics 94(2018, pp 36-44.
- ☐ Lam Ghai Lim and Tong Boon Tang, Design of concave capacitance sensor for void fraction measurement in gas-liquid flow, ICITEE, Yogyakarta, Indonesia 2016.
- ☐ H Caniere, C T' Jone, A Willockx, M De Paepe, M Christians, E van Rooyen, et al., Horizontal two-phase flow characterization with a capacitance sensor, Measurment science and technology 18(2007), pp 2898-2906.
- ☐ Yuki SAKAMOTO, Tetsuya SATO and Hiroaki KOBAYASHI, Development study of a capacitance void fraction sensor using asymmetrical electrode plates, Journal of fluid science and technology 11(2016), pp 1-14.
- □ Norihide Maeno, Wataru Okada, Satoshi Kitakogo, Yuki Sumi, Tetusuya Sato and Hiroaki Kobayashi, Void fraction measurement of cryogenic two phase flow using a capacitance sensor, Trans. JSSASS Aerospace Tech. Japan 12(2014), pp Pa_101-Pa_107.

ACKNOWLEDGEMENT