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Introduction

 Multiple conductor options exist for next-generation high
field accelerator magnets. Whether or not a hybrid, it is likely
these magnets will incorporate Nb,Sn Rutherford cable.

e The performance targets of the next-generation dipoles
hasn’t been reached yet for a Nb,;Sn magnet.

* It will be important to have a low-cost, fast turn around
measurement program to measure the full excitation J_ and
stability performance of Nb,Sn Rutherford cable magnet
scale composite.

* |ldeally, this measurement program could include many
partners in universities and national labs by requiring lower
cost and smaller footprint infrastructure.

* In this research, a low-cost measurement system described
in [1] was modified to handle additional instrumentation to
perform stability measurements of fully excited Nb,Sn
Rutherford cable in a LHe bath with applied fields up to 14 T.

* The stability diagram generated from the experimental runs
was compared to a theoretical analytical stability model.

Nb,Sn strand and cable specifications

Strand Type Oxford RRP
Stack design 132/169
Ternary Element (?) Ti
Production year 2012
Diameter, d, [mm] 0.7

. (4.2 K, 12T), [A] 449
J.(4.2K, 1271), [A/mm?] 2649

. (4.2 K, 15T), [A/mm?] 219
J.(4.2K, 15T1), [A/mm?] 1297

Twist pitch, [mm] 13
Cu fraction, A, [7] 56.0
RRR (273 K/20 K) 153

HT dwell step 210°/72 h + 400 °C/48
+ 640 °C/50 h

Cable T1

Strand Count 40

Core (?) Yes

Core width, [mm] 9.5

Lay angle, [degrees] 16.8

Width, [mm] 14.7

Thickness (mid), [mm] 2
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Assessment of stability of fully-excited Nb3Sn Rutherford cable with modified ICR at 4.2 K
and 12 T using a superconducting transformer and solenoidal magnet

Fermilab iral bifilar robe with 30 kA
superconducting transformer: full-excitation stabilit
measurements at 4.2 K with applied fields up to 14 T.

The Teslatron Il measurement
station at Fermilab has a 77
mm bore solenoid which can
apply fields of 14-16 T at 4.2 K

and 2.2 K respectably.

A spiral bifilar sample holder
which is coupled with a 60-
multiplication factor NbTi
superconducting transformer
was designed to reduce the
integrated Lorentz forces on
the probe and magnet
assembly.

The cable was insulated with
S-glass braided sheath but
remained unimpregnated and
therefore was in good contact
with the liquid Helium.

Voltage taps were soldered
hear a strain gauge used to
generate heat perturbations.

Rutherford cable steady state thermal stability model
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* A steady state analytical stability model for cables in liquid cryogen derived in Kovacs et al.
was modified to determine stability of the Nb,Sn Rutherford cable in LHe [2].

* The resistivity of the stabilizer is mostly constant over the temperatures of concern and
determined from RRR.

* his chosen tobe 10 kW/m2K < 5.2 Kand 1 kW/m2K = 5.2 K.
* T.=4.52 Kis chosen as when the surface cooling equals the joule heating at T =5.2 K.

* The model below assumes current sharing at soldered junctions, a linear |_versus T, and a
flat sloped temperature gradient from cold-end cooling.
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Rutherford cable dynamic thermal stability model

Dynamic Stability Criterion (1s pulses):
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* C, calculated from experimental data fit from PPMS data from Nb;Sn strand at 12 T [3]

Full-excitation thermal stability measurement results

Stability Measurements at 12 Tesla
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Conclusions

* A laboratory scale system was modified to determine stability of a fully excited Nb,Sn
Rutherford cable.

* A steady state analytical model and dynamic analytical model resulted in similar values
as experimental data, but they were not able to capture the I/I_stability relationship.
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