Assessment of stability of fully-excited Nb3Sn Rutherford cable with modified ICR at 4.2 K

and 12 T using a superconducting transformer and solenoidal magnet

C. J. Kovacs¹, M. D. Sumption¹, E. Z. Barzi², A. V. Zlobin², M. Majoros¹

c Materials (CSMM). Department of Materials Science & Engineering. The Ohio State University, USA

¹Center for Superconducting & Magnetic Materials (CSMM), Department of Materials Science & Engineering, The Ohio State University, USA

²Applied Physics and Superconductivity Technology Division (APS-TD), Fermi National Accelerator Laboratory, USA

Introduction

- Multiple conductor options exist for next-generation high field accelerator magnets. Whether or not a hybrid, it is likely these magnets will incorporate Nb₃Sn Rutherford cable.
- The performance targets of the next-generation dipoles hasn't been reached yet for a Nb₃Sn magnet.
- It will be important to have a low-cost, fast turn around measurement program to measure the full excitation J_c and stability performance of Nb_3Sn Rutherford cable magnet scale composite.
- Ideally, this measurement program could include many partners in universities and national labs by requiring lower cost and smaller footprint infrastructure.
- In this research, a low-cost measurement system described in [1] was modified to handle additional instrumentation to perform stability measurements of fully excited Nb₃Sn Rutherford cable in a LHe bath with applied fields up to 14 T.
- The stability diagram generated from the experimental runs was compared to a theoretical analytical stability model.

Nb₃Sn strand and cable specifications

Strand Type	Oxford RRP
Stack design	132/169
Ternary Element (?)	Ti
Production year	2012
Diameter, d, [mm]	0.7
I _c (4.2 K, 12 T), [A]	449
J_c (4.2 K, 12 T), [A/mm ²]	2649
I _c (4.2 K, 15 T), [A/mm ²]	219
J_c (4.2 K, 15 T), [A/mm ²]	1297
Twist pitch, [mm]	13
Cu fraction, λ, [%]	56.0
RRR (273 K/20 K)	153
HT dwell step	210°/72 h + 400°C/48
	+ 640 °C/50 h
Cable T1	
Strand Count	40
Core (?)	Yes
Core width, [mm]	9.5
Lay angle, [degrees]	16.8
Width, [mm]	14.7
Thickness (mid), [mm]	2

Fermilab spiral bifilar probe with 30 kA superconducting transformer: full-excitation stability measurements at 4.2 K with applied fields up to 14 T.

- The Teslatron II measurement station at Fermilab has a 77 mm bore solenoid which can apply fields of 14-16 T at 4.2 K and 2.2 K respectably.
- A spiral bifilar sample holder which is coupled with a 60multiplication factor NbTi superconducting transformer was designed to reduce the integrated Lorentz forces on the probe and magnet assembly.
- The cable was insulated with S-glass braided sheath but remained unimpregnated and therefore was in good contact with the liquid Helium.
- Voltage taps were soldered near a strain gauge used to generate heat perturbations.

Rutherford cable steady state thermal stability model

 $1 \leq \frac{ \overbrace{ \begin{array}{c} \rho_{norm} \left(i \times I_c \left(\frac{T - T_{cs}}{T_c - T_{cs}} \right) \right)^2} }_{PA_{cu}} + \underbrace{ \begin{array}{c} Heat \ Perturbation \\ per \ unit \ length \\ norm \left(i \times I_c \left(\frac{T - T_{cs}}{T_c - T_{cs}} \right) \right)^2 \\ PA_{cu} + \underbrace{ \begin{array}{c} G_d \\ \hline G_d \end{array} }_{Cold-end \ cooling \\ per \ unit \ length \\ and \ unit \ surface \ area \\ normalized \ for \ spot \ size \\ \end{array} }_{Cold-end \ cooling \\ per \ unit \ length \\ normalized \ for \ spot \ size \\ }$

- A steady state analytical stability model for cables in liquid cryogen derived in Kovacs et al.
 was modified to determine stability of the Nb₃Sn Rutherford cable in LHe [2].
- The resistivity of the stabilizer is mostly constant over the temperatures of concern and determined from *RRR*.
- h is chosen to be 10 kW/m²K < 5.2 K and 1 kW/m²K \geq 5.2 K.
- $T_{cs} = 4.52$ K is chosen as when the surface cooling equals the joule heating at T = 5.2 K.
- The model below assumes current sharing at soldered junctions, a linear I_c versus T, and a flat sloped temperature gradient from cold-end cooling.

Rutherford cable dynamic thermal stability model

Dynamic Stability Criterion (1s pulses):

• C_p calculated from experimental data fit from PPMS data from Nb₃Sn strand at 12 T [3]

Full-excitation thermal stability measurement results

Conclusions

- A laboratory scale system was modified to determine stability of a fully excited Nb₃Sn Rutherford cable.
- A steady state analytical model and dynamic analytical model resulted in similar values as experimental data, but they were not able to capture the I/I_c stability relationship.

 References
 - E. Barzi et al. "Superconducting Transformer for Superconducting Cable Tests in a Magnetic Field" AIP Conference Proceedings, 1218, pp.421-428 (2010)
 - C.J. Kovacs, M. Majoros, M.D. Sumption, and E.W. Collings, "Quench and stability of Roebel cables at 77 K and self-field: minimum quench power, cold end cooling, and cable cooling efficiency," *Cryogenics*, 95, pp.57-63 (2018)
- [3] C.S. Myers, M.A. Susner, L. Motowidlo, J. Distin, M.D. Sumption, and E.W. Collings, "Specific heats of composite Bi2212, Nb₃Sn, and MgB₂ wire conductors", *IEEE Trans. Appl. Supercond.*, 23, 3, (2013)

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science Graduate Student Research Program (SCGSR)

Department of Materials Science and Engineering