Current status of a cryostat for the provision of hydrogen with adjustable ortho-para-ratio for neutron moderation S Eisenhut¹, M Klaus¹, C Haberstroh¹, J Baggemann², T Cronert², Y Beßler³, C Lange¹ ¹Technische Universität Dresden, Dresden, Germany ²JCNS, Forschungszentrum Jülich, Jülich, Germany ³ZEA-1, Forschungszentrum Jülich, Jülich, Germany #### Motivation The Problem Cryogenic moderators using para-H₂ are currently widely used to produce cold neutrons. However, the neutrons cannot reach full *thermalization*, i.e. the neutron temperature lies above the temperature of the moderating medium. This is caused by the extremely low scattering cross section of para-H₂ for neutron energies below 30 meV. The Idea Adding a well-defined amount of ortho-H₂ can increase the scattering cross section of the liquid hydrogen moderator and help moving the neutron spectrum towards lower energies, and hence reducing the neutron temperature. **The Vision** Building a cold moderator of unprecedented performance for the High Brilliance Neutron Source (HBS) currently being developed by Forschungszentrum Jülich in Germany ## LH₂ moderator prototype ## Concentration monitoring Method Based on speed of sound (SRS BGA244) Accuracy Currently being assessed and improved ### **Current status** - ✓ Commissioning of mixing cryostat successful - ✓ Full conversion in ortho-para-H₂ catalyst shown - ✓ Mixing operation for several ortho-para-H₂ ratios and concentration monitoring demonstrated - Commissioning with moderator vessel to be done ## Summary A small-scale hydrogen liquefier with an adjustable ortho-para-H₂ ratio has been built and commissioned. As soon as a safe operation with the moderator vessel has been demonstrated, the system is ready for operation at a neutron source, e.g. the training reactor AKR-2 at TU Dresden, for measurements of neutron spectra resulting from different hydrogen compositions. This will be a crucial step towards the development of highly optimized cryogenic hydrogen moderators for use in Compact Accelerator-Driven Neutron Sources, such as the future High Brilliance Neutron Source in Jülich, Germany.